Magnons, the quanta of collective spin excitations in magnetically ordered materials, have distinct properties that make them uniquely appealing for quantum information applications. They can have ultra-small wavelengths down to the nanometer scale even at microwave frequencies. They can provide coupling to a diverse set of other quantum excitations, and their inherently gyrotropic dynamics forms the basis for pronounced nonreciprocities. In this article, we discuss what the current research challenges are for integrating magnetic materials into quantum information systems and provide a perspective on how to address them.

1.
G.
Kurizki
,
P.
Bertet
,
Y.
Kubo
,
K.
Mølmer
,
D.
Petrosyan
,
P.
Rabl
, and
J.
Schmiedmayer
, “
Quantum technologies with hybrid systems
,”
Proc. Natl. Acad. Sci.
112
,
3866
3873
(
2015
).
2.
A.
Blais
,
A. L.
Grimsmo
,
S. M.
Girvin
, and
A.
Wallraff
, “
Circuit quantum electrodynamics
,”
Rev. Mod. Phys.
93
,
025005
(
2021
).
3.
J.
Wang
,
F.
Sciarrino
,
A.
Laing
, and
M. G.
Thompson
, “
Integrated photonic quantum technologies
,”
Nat. Photonics
14
,
273
284
(
2020
).
4.
N. A.
Gershenfeld
and
I. L.
Chuang
, “
Bulk spin-resonance quantum computation
,”
Science
275
,
350
356
(
1997
).
5.
L. M.
Vandersypen
,
M.
Breyta
,
G.
Steffen
,
C. S.
Yannoni
,
M. H.
Sherwood
, and
I. L.
Chuang
, “
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance
,”
Nature
414
,
883
887
(
2001
).
6.
R.
Schirhagl
,
K.
Chang
,
M.
Loretz
, and
C. L.
Degen
, “
Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology
,”
Annu. Rev. Phys. Chem.
65
,
83
105
(
2014
).
7.
D.
Lachance-Quirion
,
S. P.
Wolski
,
Y.
Tabuchi
,
S.
Kono
,
K.
Usami
, and
Y.
Nakamura
, “
Entanglement-based single-shot detection of a single magnon with a superconducting qubit
,”
Science
367
,
425
428
(
2020
).
8.
Y.
Tabuchi
,
S.
Ishino
,
A.
Noguchi
,
T.
Ishikawa
,
R.
Yamazaki
,
K.
Usami
, and
Y.
Nakamura
, “
Coherent coupling between a ferromagnetic magnon and a superconducting qubit
,”
Science
349
,
405
408
(
2015
).
9.
D.
Xu
,
X. K.
Gu
,
H. K.
Li
,
Y. C.
Weng
,
Y. P.
Wang
,
J.
Li
,
H.
Wang
,
S. Y.
Zhu
, and
J. Q.
You
, “
Quantum control of a single magnon in a macroscopic spin system
,”
Phys. Rev. Lett.
130
,
193603
(
2023
).
10.
Y.
Li
,
W.
Zhang
,
V.
Tyberkevych
,
W. K.
Kwok
,
A.
Hoffmann
, and
V.
Novosad
, “
Hybrid magnonics: Physics, circuits, and applications for coherent information processing
,”
J. Appl. Phys.
128
,
130902
(
2020
).
11.
D. D.
Awschalom
,
C. R.
Du
,
R.
He
,
F. J.
Heremans
,
A.
Hoffmann
,
J.
Hou
,
H.
Kurebayashi
,
Y.
Li
,
L.
Liu
,
V.
Novosad
,
J.
Sklenar
,
S. E.
Sullivan
,
D.
Sun
,
H.
Tang
,
V.
Tyberkevych
,
C.
Trevillian
,
A. W.
Tsen
,
L. R.
Weiss
,
W.
Zhang
,
X.
Zhang
,
L.
Zhao
, and
C. H.
Zollitsch
, “
Quantum engineering with hybrid magnonic systems and materials
,”
IEEE Trans. Quantum Eng.
2
,
21200172
(
2021
).
12.
H. Y.
Yuan
,
Y.
Cao
,
A.
Kamra
,
R. A.
Duine
, and
P.
Yan
, “
Quantum magnonics: When magnon spintronics meets quantum information science
,”
Phys. Rep.
965
,
1
74
(
2022
).
13.
Y.
Li
,
T.
Polakovic
,
Y. L.
Wang
,
J.
Xu
,
S.
Lendinez
,
Z.
Zhang
,
J.
Ding
,
T.
Khaire
,
H.
Saglam
,
R.
Divan
,
J.
Pearson
,
W. K.
Kwok
,
Z.
Xiao
,
V.
Novosad
,
A.
Hoffmann
, and
W.
Zhang
, “
Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices
,”
Phys. Rev. Lett.
123
,
107701
(
2019
).
14.
J. T.
Hou
and
L.
Liu
, “
Strong coupling between microwave photons and nanomagnet magnons
,”
Phys. Rev. Lett.
123
,
107702
(
2019
).
15.
X.
Zhang
,
N.
Zhu
,
C. L.
Zou
, and
H. X.
Tang
, “
Optomagnonic whispering gallery microresonators
,”
Phys. Rev. Lett.
117
,
123605
(
2016
).
16.
A.
Hoffmann
and
S. D.
Bader
, “
Opportunities at the frontiers of spintronics
,”
Phys. Rev. Appl.
4
,
047001
(
2015
).
17.
B.
Dieny
,
I. L.
Prejbeanu
,
K.
Garello
,
P.
Gambardella
,
P.
Freitas
,
R.
Lehndorff
,
W.
Raberg
,
U.
Ebels
,
S. O.
Demokritov
,
J.
Akerman
,
A.
Deac
,
P.
Pirro
,
C.
Adelmann
,
A.
Anane
,
A. V.
Chumak
,
A.
Hirohata
,
S.
Mangin
,
S. O.
Valenzuela
,
M. C.
Onbaşl i
,
M.
d'Aquino
,
G.
Prenat
,
G.
Finocchio
,
L.
Lopez-Diaz
,
R.
Chantrell
,
O.
Chubykalo-Fesenko
, and
P.
Bortolotti
, “
Opportunities and challenges for spintronics in the microelectronics industry
,”
Nat. Electron.
3
,
446
459
(
2020
).
18.
P.
Lodahl
,
S.
Mahmoodian
,
S.
Stobbe
,
A.
Rauschenbeutel
,
P.
Schneeweiss
,
J.
Volz
,
H.
Pichler
, and
P.
Zoller
, “
Chiral quantum optics
,”
Nature
541
,
473
480
(
2017
).
19.
S. M.
Rezende
,
Fundamentals of Magnonics
(
Springer
,
2020
), Vol.
969
.
20.
T. L.
Gilbert
, “
A phenomenological theory of damping in ferromagnetic materials
,”
IEEE Trans. Magn.
40
,
3443
3449
(
2004
).
21.
C. L.
Jermain
,
S. V.
Aradhya
,
N. D.
Reynolds
,
R. A.
Buhrman
,
J. T.
Brangham
,
M. R.
Page
,
P. C.
Hammel
,
F. Y.
Yang
, and
D. C.
Ralph
, “
Increased low-temperature damping in yttrium iron garnet thin films
,”
Phys. Rev. B
95
,
174411
(
2017
).
22.
H.
Maier-Flaig
,
S.
Klingler
,
C.
Dubs
,
O.
Surzhenko
,
R.
Gross
,
M.
Weiler
,
H.
Huebl
, and
S. T.
Goennenwein
, “
Temperature-dependent magnetic damping of yttrium iron garnet spheres
,”
Phys. Rev. B
95
,
214423
(
2017
).
23.
B.
Khodadadi
,
A.
Rai
,
A.
Sapkota
,
A.
Srivastava
,
B.
Nepal
,
Y.
Lim
,
D.
Smith
,
C.
Mewes
,
S.
Budhathoki
,
A.
Hauser
,
M.
Gao
,
J.-F.
Li
,
D.
Viehland
,
Z.
Jiang
,
J.
Heremans
,
P.
Balachandran
,
T.
Mewes
, and
S.
Emori
, “
Conductivity like Gilbert damping due to intraband scattering in epitaxial iron
,”
Phys. Rev. Lett.
124
,
157201
(
2020
).
24.
H. L.
Glass
and
M. T.
Elliot
, “
Attainment of the intrinsic FMR linewidth in yttrium iron garnet films grown by liquid phase epitaxy
,”
J. Cryst. Growth
34
,
285
288
(
1976
).
25.
G.
Schmidt
,
C.
Hauser
,
P.
Trempler
,
M.
Paleschke
, and
E. T.
Papaioannou
, “
Ultra thin films of yttrium iron garnet with very low damping: A review
,”
Phys. Status Solidi B
257
,
1900644
(
2020
).
26.
Y.
Sun
,
Y. Y.
Song
,
H.
Chang
,
M.
Kabatek
,
M.
Jantz
,
W.
Schneider
,
M.
Wu
,
H.
Schultheiss
, and
A.
Hoffmann
, “
Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films
,”
Appl. Phys. Lett.
101
,
152405
(
2012
).
27.
M. C.
Onbasli
,
A.
Kehlberger
,
D. H.
Kim
,
G.
Jakob
,
M.
Kläui
,
A. V.
Chumak
,
B.
Hillebrands
, and
C. A.
Ross
, “
Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization
,”
APL Mater.
2
,
106102
(
2014
).
28.
B. M.
Howe
,
S.
Emori
,
H. M.
Jeon
,
T. M.
Oxholm
,
J. G.
Jones
,
K.
Mahalingam
,
Y.
Zhuang
,
N. X.
Sun
, and
G. J.
Brown
, “
Pseudomorphic yttrium iron garnet thin films with low damping and inhomogeneous linewidth broadening
,”
IEEE Magn. Lett.
6
,
15351682
(
2015
).
29.
C.
Tang
,
M.
Aldosary
,
Z.
Jiang
,
H.
Chang
,
B.
Madon
,
K.
Chan
,
M.
Wu
,
J. E.
Garay
, and
J.
Shi
, “
Exquisite growth control and magnetic properties of yttrium iron garnet thin films
,”
Appl. Phys. Lett.
108
,
102403
(
2016
).
30.
R.
Arias
and
D. L.
Mills
, “
Extrinsic contributions to the ferromagnetic resonance response of ultrathin films
,”
Phys. Rev. B
60
,
7395
(
1999
).
31.
O. D.
Kelly
,
A.
Anane
,
R.
Bernard
,
J. B.
Youssef
,
C.
Hahn
,
A. H.
Molpeceres
,
C.
Carrétéro
,
E.
Jacquet
,
C.
Deranlot
,
P.
Bortolotti
,
R.
Lebourgeois
,
J. C.
Mage
,
G. D.
Loubens
,
O.
Klein
,
V.
Cros
, and
A.
Fert
, “
Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system
,”
Appl. Phys. Lett.
103
,
082408
(
2013
).
32.
E. G.
Spencer
,
R. C.
Lecraw
, and
A. M.
Clogston
, “
Low-temperature line-width maximum in yttrium iron garnet
,”
Phys. Rev. Lett.
3
,
32
(
1959
).
33.
J. F.
Dillon
and
J. W.
Nielsen
, “
Effects of rare earth impurities on ferrimagnetic resonance in yttrium iron garnet
,”
Phys. Rev. Lett.
3
,
30
(
1959
).
34.
M.
Sparks
,
R.
Loudon
, and
C.
Kittel
, “
Ferromagnetic relaxation. I. Theory of the relaxation of the uniform precession and the degenerate spectrum in insulators at low temperatures
,”
Phys. Rev.
122
,
791
(
1961
).
35.
E. G.
Spencer
,
R. C.
Lecraw
, and
R. C.
Linares
, “
Low-temperature ferromagnetic relaxation in yttrium iron garnet
,”
Phys. Rev.
123
,
1937
(
1961
).
36.
V. V.
Danilov
,
D. L.
Lyfar'
,
Y. V.
Lyubon'ko
,
A. Y.
Nechiporuk
, and
S. M.
Ryabchenko
, “
Low-temperature ferromagnetic resonance in epitaxial garnet films on paramagnetic substrates
,”
Sov. Phys. J.
32
,
276
280
(
1989
).
37.
V. V.
Danilov
and
A. Y.
Nechiporuk
, “
Experimental investigation of the quantum amplification effect for magnetostatic waves in ferrite-paramagnet structures
,”
Tech. Phys. Lett.
28
,
369
370
(
2002
).
38.
L.
Mihalceanu
,
V. I.
Vasyuchka
,
D. A.
Bozhko
,
T.
Langner
,
A. Y.
Nechiporuk
,
V. F.
Romanyuk
,
B.
Hillebrands
, and
A. A.
Serga
, “
Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films
,”
Phys. Rev. B
97
,
214405
(
2018
).
39.
S.
Kosen
,
A. F. V.
Loo
,
D. A.
Bozhko
,
L.
Mihalceanu
, and
A. D.
Karenowska
, “
Microwave magnon damping in YIG films at millikelvin temperatures
,”
APL Mater.
7
,
101120
(
2019
).
40.
A.
Mitra
,
O.
Cespedes
,
Q.
Ramasse
,
M.
Ali
,
S.
Marmion
,
M.
Ward
,
R. M.
Brydson
,
C. J.
Kinane
,
J. F.
Cooper
,
S.
Langridge
, and
B. J.
Hickey
, “
Interfacial origin of the magnetisation suppression of thin film yttrium iron garnet
,”
Sci. Rep.
7
,
11774
(
2017
).
41.
J. F.
Cooper
,
C. J.
Kinane
,
S.
Langridge
,
M.
Ali
,
B. J.
Hickey
,
T.
Niizeki
,
K.
Uchida
,
E.
Saitoh
,
H.
Ambaye
, and
A.
Glavic
, “
Unexpected structural and magnetic depth dependence of YIG thin films
,”
Phys. Rev. B
96
,
104404
(
2017
).
42.
P.
Quarterman
,
Y.
Fan
,
Z.
Chen
,
C. J.
Jensen
,
R. V.
Chopdekar
,
D. A.
Gilbert
,
M. E.
Holtz
,
M. D.
Stiles
,
J. A.
Borchers
,
K.
Liu
,
L.
Liu
, and
A. J.
Grutter
, “
Probing antiferromagnetic coupling in magnetic insulator/metal heterostructures
,”
Phys. Rev. Mater.
6
,
094418
(
2022
).
43.
D.
Song
,
L.
Ma
,
S.
Zhou
, and
J.
Zhu
, “
Oxygen deficiency induced deterioration in microstructure and magnetic properties at Y3Fe5O12/ Pt interface
,”
Appl. Phys. Lett.
107
,
42401
(
2015
).
44.
M.
Balinskiy
,
S.
Ojha
,
H.
Chiang
,
M.
Ranjbar
,
C. A.
Ross
, and
A.
Khitun
, “
Spin wave excitation in sub-micrometer thick Y3Fe5O12 films fabricated by pulsed laser deposition on garnet and silicon substrates: A comparative study
,”
J. Appl. Phys.
122
,
123904
(
2017
).
45.
A.
Delgado
,
Y.
Guerra
,
E.
Padrón-Hernández
, and
R.
Peña-Garcia
, “
Combining the sol gel method and spin coating to obtain YIG films with low FMR linewidth on silicon (100) substrate
,”
Mater. Res. Express
5
,
026419
(
2018
).
46.
P.
Trempler
,
R.
Dreyer
,
P.
Geyer
,
C.
Hauser
,
G.
Woltersdorf
, and
G.
Schmidt
, “
Integration and characterization of micron-sized YIG structures with very low Gilbert damping on arbitrary substrates
,”
Appl. Phys. Lett.
117
,
232401
(
2020
).
47.
S.
Guo
,
B.
McCullian
,
P. C.
Hammel
, and
F.
Yang
, “
Low damping at few-K temperatures in Y3Fe5O12 epitaxial films isolated from Gd3Ga5O12 substrate using a diamagnetic Y3Sc2.5Al2.5O12 spacer
,”
J. Magn. Magn. Mater.
562
,
169795
(
2022
).
48.
S.
Guo
,
D.
Russell
,
J.
Lanier
,
H.
Da
,
P. C.
Hammel
, and
F.
Yang
, “
Strong on-chip microwave photon-magnon coupling using ultralow-damping epitaxial Y3Fe5O12 films at 2 K
,”
Nano Lett.
21
,
5055
(
2023
).
49.
S.
Mankovsky
,
D.
Ködderitzsch
,
G.
Woltersdorf
, and
H.
Ebert
, “
First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys
,”
Phys. Rev. B
87
,
014430
(
2013
).
50.
M. A.
Schoen
,
D.
Thonig
,
M. L.
Schneider
,
T. J.
Silva
,
H. T.
Nembach
,
O.
Eriksson
,
O.
Karis
, and
J. M.
Shaw
, “
Ultra-low magnetic damping of a metallic ferromagnet
,”
Nat. Phys.
12
,
839
842
(
2016
).
51.
Y.
Zhao
,
Q.
Song
,
S. H.
Yang
,
T.
Su
,
W.
Yuan
,
S. S.
Parkin
,
J.
Shi
, and
W.
Han
, “
Experimental investigation of temperature-dependent Gilbert damping in permalloy thin films
,”
Sci. Rep.
6
,
22890
(
2016
).
52.
A. J.
Lee
,
J. T.
Brangham
,
Y.
Cheng
,
S. P.
White
,
W. T.
Ruane
,
B. D.
Esser
,
D. W.
McComb
,
P. C.
Hammel
, and
F.
Yang
, “
Metallic ferromagnetic films with magnetic damping under 1.4×103
,”
Nat. Commun.
8
,
234
(
2017
).
53.
V.
Kamberský
, “
On the Landau–Lifshitz relaxation in ferromagnetic metals
,”
Can. J. Phys.
48
,
2906
2911
(
1970
).
54.
V.
Kamberský
, “
On ferromagnetic resonance damping in metals
,”
Czech. J. Phys.
26
,
1366
1383
(
1976
).
55.
V.
Korenman
and
R. E.
Prange
, “
Anomalous damping of spin waves in magnetic metals
,”
Phys. Rev. B
6
,
2769
(
1972
).
56.
V.
Kamberský
, “
Spin-orbital Gilbert damping in common magnetic metals
,”
Phys. Rev. B
76
,
134416
(
2007
).
57.
K.
Gilmore
,
Y. U.
Idzerda
, and
M. D.
Stiles
, “
Spin-orbit precession damping in transition metal ferromagnets (invited)
,”
J. Appl. Phys.
103
,
07D303
(
2008
).
58.
K.
Gilmore
,
Y. U.
Idzerda
, and
M. D.
Stiles
, “
Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations
,”
Phys. Rev. Lett.
99
,
027204
(
2007
).
59.
S. M.
Bhagat
and
P.
Lubitz
, “
Temperature variation of ferromagnetic relaxation in the 3d transition metals
,”
Phys. Rev. B
10
,
179
(
1974
).
60.
M.
Fähnle
,
D.
Steiauf
, and
J.
Seib
, “
The Gilbert equation revisited: Anisotropic and nonlocal damping of magnetization dynamics
,”
J. Phys. D
41
,
164014
(
2008
).
61.
K.
Gilmore
,
M. D.
Stiles
,
J.
Seib
,
D.
Steiauf
, and
M.
Fähnle
, “
Anisotropic damping of the magnetization dynamics in Ni, Co, and Fe
,”
Phys. Rev. B
81
,
174414
(
2010
).
62.
D.
Thonig
and
J.
Henk
, “
Gilbert damping tensor within the breathing Fermi surface model: Anisotropy and non-locality
,”
New J. Phys.
16
,
013032
(
2014
).
63.
I.
Turek
,
J.
Kudrnovský
, and
V.
Drchal
, “
Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys
,”
Phys. Rev. B
92
,
214407
(
2015
).
64.
D.
Thonig
,
Y.
Kvashnin
,
O.
Eriksson
, and
M.
Pereiro
, “
Nonlocal Gilbert damping tensor within the torque-torque correlation model
,”
Phys. Rev. Mater.
2
,
013801
(
2018
).
65.
A.
Brataas
,
Y.
Tserkovnyak
, and
G. E.
Bauer
, “
Scattering theory of Gilbert damping
,”
Phys. Rev. Lett.
101
,
037207
(
2008
).
66.
M. A.
Schoen
,
J.
Lucassen
,
H. T.
Nembach
,
B.
Koopmans
,
T. J.
Silva
,
C. H.
Back
, and
J. M.
Shaw
, “
Magnetic properties in ultrathin 3d transition-metal binary alloys. II. Experimental verification of quantitative theories of damping and spin pumping
,”
Phys. Rev. B
95
,
134411
(
2017
).
67.
M.
Arora
,
E. K.
Delczeg-Czirjak
,
G.
Riley
,
T. J.
Silva
,
H. T.
Nembach
,
O.
Eriksson
, and
J. M.
Shaw
, “
Magnetic damping in polycrystalline thin-film Fe-V alloys
,”
Phys. Rev. Appl.
15
,
054031
(
2021
).
68.
Y.
Wei
,
W.
Zhang
,
B.
Lv
,
X.
Xu
,
S.
Xi
, and
Z.
Ma
, “
Ultralow magnetic damping of a common metallic ferromagnetic film
,”
Sci. Adv.
7
,
eabc5053
(
2021
).
69.
L.
Chen
,
S.
Mankovsky
,
S.
Wimmer
,
M. A.
Schoen
,
H. S.
Körner
,
M.
Kronseder
,
D.
Schuh
,
D.
Bougeard
,
H.
Ebert
,
D.
Weiss
, and
C. H.
Back
, “
Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001)
,”
Nat. Phys.
14
,
490
494
(
2018
).
70.
Y.
Li
,
F.
Zeng
,
S. S.
Zhang
,
H.
Shin
,
H.
Saglam
,
V.
Karakas
,
O.
Ozatay
,
J. E.
Pearson
,
O. G.
Heinonen
,
Y.
Wu
,
A.
Hoffmann
, and
W.
Zhang
, “
Giant anisotropy of Gilbert damping in epitaxial CoFe films
,”
Phys. Rev. Lett.
122
,
117203
(
2019
).
71.
H.
Xia
,
Z. R.
Zhao
,
F. L.
Zeng
,
H. C.
Zhao
,
J. Y.
Shi
,
Z.
Zheng
,
X.
Shen
,
J.
He
,
G.
Ni
,
Y. Z.
Wu
,
L. Y.
Chen
, and
H. B.
Zhao
, “
Giant anisotropic Gilbert damping versus isotropic ultrafast demagnetization in monocrystalline Co50Fe50 films
,”
Phys. Rev. B
104
,
024404
(
2021
).
72.
L.
Chen
,
S.
Mankovsky
,
M.
Kronseder
,
D.
Schuh
,
M.
Prager
,
D.
Bougeard
,
H.
Ebert
,
D.
Weiss
, and
C. H.
Back
, “
Interfacial tuning of anisotropic Gilbert damping
,”
Phys. Rev. Lett.
130
,
046704
(
2023
).
73.
J. O.
Rantschler
,
R. D.
McMichael
,
A.
Castillo
,
A. J.
Shapiro
,
W. F.
Egelhoff
,
B. B.
Maranville
,
D.
Pulugurtha
,
A. P.
Chen
, and
L. M.
Connors
, “
Effect of 3d, 4d, and 5d transition metal doping on damping in permalloy thin films
,”
J. Appl. Phys.
101
,
033911
(
2007
).
74.
S.
Mizukami
,
T.
Kubota
,
X.
Zhang
,
H.
Naganuma
,
M.
Oogane
,
Y.
Ando
, and
T.
Miyazaki
, “
Influence of Pt doping on Gilbert damping in permalloy films and comparison with the perpendicularly magnetized alloy films
,”
Jpn. J. Appl. Phys.
50
,
103003
(
2011
).
75.
C.
Luo
,
Z.
Feng
,
Y.
Fu
,
W.
Zhang
,
P. K.
Wong
,
Z. X.
Kou
,
Y.
Zhai
,
H. F.
Ding
,
M.
Farle
,
J.
Du
, and
H. R.
Zhai
, “
Enhancement of magnetization damping coefficient of permalloy thin films with dilute Nd dopants
,”
Phys. Rev. B
89
,
184412
(
2014
).
76.
S.
Wu
,
D. A.
Smith
,
P.
Nakarmi
,
A.
Rai
,
M.
Clavel
,
M. K.
Hudait
,
J.
Zhao
,
F. M.
Michel
,
C.
Mewes
,
T.
Mewes
, and
S.
Emori
, “
Room-temperature intrinsic and extrinsic damping in polycrystalline Fe thin films
,”
Phys. Rev. B
105
,
174408
(
2022
).
77.
J.
Wang
,
C.
Dong
,
Y.
Wei
,
X.
Lin
,
B.
Athey
,
Y.
Chen
,
A.
Winter
,
G. M.
Stephen
,
D.
Heiman
,
Y.
He
,
H.
Chen
,
X.
Liang
,
C.
Yu
,
Y.
Zhang
,
E. J.
Podlaha-Murphy
,
M.
Zhu
,
X.
Wang
,
J.
Ni
,
M.
McConney
,
J.
Jones
,
M.
Page
,
K.
Mahalingam
, and
N. X.
Sun
, “
Magnetostriction, soft magnetism, and microwave properties in Co-Fe-C alloy films
,”
Phys. Rev. Appl.
12
,
034011
(
2019
).
78.
C.
Gong
,
L.
Li
,
Z.
Li
,
H.
Ji
,
A.
Stern
,
Y.
Xia
,
T.
Cao
,
W.
Bao
,
C.
Wang
,
Y.
Wang
,
Z. Q.
Qiu
,
R. J.
Cava
,
S. G.
Louie
,
J.
Xia
, and
X.
Zhang
, “
Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
,”
Nature
546
,
265
269
(
2017
).
79.
L.
Alahmed
,
B.
Nepal
,
J.
Macy
,
W.
Zheng
,
B.
Casas
,
A.
Sapkota
,
N.
Jones
,
A. R.
Mazza
,
M.
Brahlek
,
W.
Jin
,
M.
Mahjouri-Samani
,
S. S.
Zhang
,
C.
Mewes
,
L.
Balicas
,
T.
Mewes
, and
P.
Li
, “
Magnetism and spin dynamics in room-temperature van der Waals magnet Fe5GeTe2
,”
2D Mater.
8
,
045030
(
2021
).
80.
Y.
Zhang
,
H.
Xu
,
J.
Feng
,
H.
Wu
,
G.
Yu
, and
X.
Han
, “
Magnetic two-dimensional van der Waals materials for spintronic devices*
,”
Chin. Phys. B
30
,
118504
(
2021
).
81.
P.
Swekis
,
A. S.
Sukhanov
,
Y. C.
Chen
,
A.
Gloskovskii
,
G. H.
Fecher
,
I.
Panagiotopoulos
,
J.
Sichelschmidt
,
V.
Ukleev
,
A.
Devishvili
,
A.
Vorobiev
,
D. S.
Inosov
,
S. T.
Goennenwein
,
C.
Felser
, and
A.
Markou
, “
Magnetic and electronic properties of Weyl semimetal Co2MnGa thin films
,”
Nanomaterials
11
,
251
(
2021
).
82.
P.
Nikolić
, “
Universal spin wave damping in magnetic Weyl semimetals
,”
Phys. Rev. B
104
,
024414
(
2021
).
83.
J.
Kuneš
and
V.
Kamberský
, “
First-principles investigation of the damping of fast magnetization precession in ferromagnetic 3d metals
,”
Phys. Rev. B
65
,
212411
(
2002
).
84.
A. A.
Starikov
,
P. J.
Kelly
,
A.
Brataas
,
Y.
Tserkovnyak
, and
G. E.
Bauer
, “
Unified first-principles study of Gilbert damping, spin-flip diffusion, and resistivity in transition metal alloys
,”
Phys. Rev. Lett.
105
,
236601
(
2010
).
85.
Y.
Liu
,
A. A.
Starikov
,
Z.
Yuan
, and
P. J.
Kelly
, “
First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder
,”
Phys. Rev. B
84
,
014412
(
2011
).
86.
H.
Ebert
,
S.
Mankovsky
,
D.
Ködderitzsch
, and
P. J.
Kelly
, “
Ab initio calculation of the Gilbert damping parameter via the linear response formalism
,”
Phys. Rev. Lett.
107
,
066603
(
2011
).
87.
J.
Chico
,
S.
Keshavarz
,
Y.
Kvashnin
,
M.
Pereiro
,
I. D.
Marco
,
C.
Etz
,
O.
Eriksson
,
A.
Bergman
, and
L.
Bergqvist
, “
First-principles studies of the Gilbert damping and exchange interactions for half-metallic Heuslers alloys
,”
Phys. Rev. B
93
,
214439
(
2016
).
88.
S.
Mankovsky
and
H.
Ebert
, “
First-principles calculation of the parameters used by atomistic magnetic simulations
,”
Electron. Struct.
4
,
034004
(
2022
).
89.
R. E.
Camley
, “
Nonreciprocal surface waves
,”
Surf. Sci. Rep.
7
,
103
187
(
1987
).
90.
A.
Barman
,
G.
Gubbiotti
,
S.
Ladak
,
A. O.
Adeyeye
,
M.
Krawczyk
,
J.
Grafe
,
C.
Adelmann
,
S.
Cotofana
,
A.
Naeemi
,
V. I.
Vasyuchka
,
B.
Hillebrands
,
S. A.
Nikitov
,
H.
Yu
,
D.
Grundler
,
A. V.
Sadovnikov
,
A. A.
Grachev
,
S. E.
Sheshukova
,
J. Y.
Duquesne
,
M.
Marangolo
,
G.
Csaba
,
W.
Porod
,
V. E.
Demidov
,
S.
Urazhdin
,
S. O.
Demokritov
,
E.
Albisetti
,
D.
Petti
,
R.
Bertacco
,
H.
Schultheiss
,
V. V.
Kruglyak
,
V. D.
Poimanov
,
S.
Sahoo
,
J.
Sinha
,
H.
Yang
,
M.
Münzenberg
,
T.
Moriyama
,
S.
Mizukami
,
P.
Landeros
,
R. A.
Gallardo
,
G.
Carlotti
,
J. V.
Kim
,
R. L.
Stamps
,
R. E.
Camley
,
B.
Rana
,
Y.
Otani
,
W.
Yu
,
T.
Yu
,
G. E.
Bauer
,
C.
Back
,
G. S.
Uhrig
,
O. V.
Dobrovolskiy
,
B.
Budinska
,
H.
Qin
,
S. V.
Dijken
,
A. V.
Chumak
,
A.
Khitun
,
D. E.
Nikonov
,
I. A.
Young
,
B. W.
Zingsem
, and
M.
Winklhofer
, “
The 2021 magnonics roadmap
,”
J. Phys.: Condens. Matter
33
,
413001
(
2021
).
91.
M.
Küß
,
M.
Heigl
,
L.
Flacke
,
A.
Hörner
,
M.
Weiler
,
A.
Wixforth
, and
M.
Albrecht
, “
Nonreciprocal magnetoacoustic waves in dipolar-coupled ferromagnetic bilayers
,”
Phys. Rev. Appl.
15
,
034060
(
2021
).
92.
F. D.
Haldane
and
S.
Raghu
, “
Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry
,”
Phys. Rev. Lett.
100
,
013904
(
2008
).
93.
R.
Verba
,
V.
Tiberkevich
, and
A.
Slavin
, “
Wide-band nonreciprocity of surface acoustic waves induced by magnetoelastic coupling with a synthetic antiferromagnet
,”
Phys. Rev. Appl.
12
,
054061
(
2019
).
94.
K.
Di
,
S. X.
Feng
,
S. N.
Piramanayagam
,
V. L.
Zhang
,
H. S.
Lim
,
S. C.
Ng
, and
M. H.
Kuok
, “
Enhancement of spin-wave nonreciprocity in magnonic crystals via synthetic antiferromagnetic coupling
,”
Sci. Rep.
5
,
10153
(
2015
).
95.
A. A.
Maznev
,
A. G.
Every
, and
O. B.
Wright
, “
Reciprocity in reflection and transmission: What is a ‘phonon diode’?
,”
Wave Motion
50
,
776
784
(
2013
).
96.
B.
Liang
,
X. S.
Guo
,
J.
Tu
,
D.
Zhang
, and
J. C.
Cheng
, “
An acoustic rectifier
,”
Nat. Mater.
9
,
989
992
(
2010
).
97.
J. H.
Moon
,
S. M.
Seo
,
K. J.
Lee
,
K. W.
Kim
,
J.
Ryu
,
H. W.
Lee
,
R. D.
McMichael
, and
M. D.
Stiles
, “
Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction
,”
Phys. Rev. B
88
,
184404
(
2013
).
98.
J.
Lan
,
W.
Yu
,
R.
Wu
, and
J.
Xiao
, “
Spin-wave diode
,”
Phys. Rev. X
5
,
041049
(
2015
).
99.
M.
Küß
,
M.
Heigl
,
L.
Flacke
,
A.
Hörner
,
M.
Weiler
,
M.
Albrecht
, and
A.
Wixforth
, “
Nonreciprocal Dzyaloshinskii-Moriya magnetoacoustic waves
,”
Phys. Rev. Lett.
125
,
217203
(
2020
).
100.
H.
Wang
,
J.
Chen
,
T.
Liu
,
J.
Zhang
,
K.
Baumgaertl
,
C.
Guo
,
Y.
Li
,
C.
Liu
,
P.
Che
,
S.
Tu
,
S.
Liu
,
P.
Gao
,
X.
Han
,
D.
Yu
,
M.
Wu
,
D.
Grundler
, and
H.
Yu
, “
Chiral spin-wave velocities induced by all-garnet interfacial Dzyaloshinskii-Moriya interaction in ultrathin yttrium iron garnet films
,”
Phys. Rev. Lett.
124
,
027203
(
2020
).
101.
K.
Di
,
V. L.
Zhang
,
H. S.
Lim
,
S. C.
Ng
,
M. H.
Kuok
,
J.
Yu
,
J.
Yoon
,
X.
Qiu
, and
H.
Yang
, “
Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film
,”
Phys. Rev. Lett.
114
,
047201
(
2015
).
102.
X.
Liang
,
Z.
Wang
,
P.
Yan
, and
Y.
Zhou
, “
Nonreciprocal spin waves in ferrimagnetic domain-wall channels
,”
Phys. Rev. B
106
,
224413
(
2022
).
103.
Y.
Iguchi
,
S.
Uemura
,
K.
Ueno
, and
Y.
Onose
, “
Nonreciprocal magnon propagation in a noncentrosymmetric ferromagnet
,”
Phys. Rev. B
92
,
184419
(
2015
).
104.
S.
Seki
,
Y.
Okamura
,
K.
Kondou
,
K.
Shibata
,
M.
Kubota
,
R.
Takagi
,
F.
Kagawa
,
M.
Kawasaki
,
G.
Tatara
,
Y.
Otani
, and
Y.
Tokura
, “
Magnetochiral nonreciprocity of volume spin wave propagation in chiral-lattice ferromagnets
,”
Phys. Rev. B
93
,
235131
(
2016
).
105.
S. A.
Odintsov
,
S. E.
Sheshukova
,
S. A.
Nikitov
,
E. H.
Locke
,
E. N.
Beginin
, and
A. V.
Sadovnikov
, “
Nonreciprocal spin wave propagation in bilayer magnonic waveguide
,”
J. Magn. Magn. Mater.
546
,
168736
(
2022
).
106.
J.
Chen
,
T.
Yu
,
C.
Liu
,
T.
Liu
,
M.
Madami
,
K.
Shen
,
J.
Zhang
,
S.
Tu
,
M. S.
Alam
,
K.
Xia
,
M.
Wu
,
G.
Gubbiotti
,
Y. M.
Blanter
,
G. E.
Bauer
, and
H.
Yu
, “
Excitation of unidirectional exchange spin waves by a nanoscale magnetic grating
,”
Phys. Rev. B
100
,
104427
(
2019
).
107.
R. A.
Gallardo
,
T.
Schneider
,
A. K.
Chaurasiya
,
A.
Oelschlägel
,
S. S.
Arekapudi
,
A.
Roldán-Molina
,
R.
Hübner
,
K.
Lenz
,
A.
Barman
,
J.
Fassbender
,
J.
Lindner
,
O.
Hellwig
, and
P.
Landeros
, “
Reconfigurable spin-wave nonreciprocity induced by dipolar interaction in a coupled ferromagnetic bilayer
,”
Phys. Rev. Appl.
12
,
034012
(
2019
).
108.
E.
Albisetti
,
S.
Tacchi
,
R.
Silvani
,
G.
Scaramuzzi
,
S.
Finizio
,
S.
Wintz
,
C.
Rinaldi
,
M.
Cantoni
,
J.
Raabe
,
G.
Carlotti
,
R.
Bertacco
,
E.
Riedo
,
D.
Petti
,
E.
Albisetti
,
G.
Scaramuzzi
,
C.
Rinaldi
,
M.
Cantoni
,
R.
Bertacco
,
D.
Petti
,
E.
Riedo
,
S.
Tacchi
,
R.
Silvani
,
G.
Carlotti
,
S.
Finizio
,
S.
Wintz
, and
J.
Raabe
, “
Optically inspired nanomagnonics with nonreciprocal spin waves in synthetic antiferromagnets
,”
Adv. Mater.
32
,
1906439
(
2020
).
109.
R. A.
Gallardo
,
P.
Alvarado-Seguel
,
T.
Schneider
,
C.
Gonzalez-Fuentes
,
A.
Roldán-Molina
,
K.
Lenz
,
J.
Lindner
, and
P.
Landeros
, “
Spin-wave non-reciprocity in magnetization-graded ferromagnetic films
,”
New J. Phys.
21
,
033026
(
2019
).
110.
R. A.
Gallardo
,
P.
Alvarado-Seguel
, and
P.
Landeros
, “
Unidirectional chiral magnonics in cylindrical synthetic antiferromagnets
,”
Phys. Rev. Appl.
18
,
054044
(
2022
).
111.
J.
Lim
,
W.
Bang
,
J.
Trossman
,
D.
Amanov
, and
J. B.
Ketterson
, “
Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment
,”
AIP Adv.
8
,
056018
(
2018
).
112.
J.
Trossman
,
J.
Lim
,
W.
Bang
,
J. B.
Ketterson
, and
C. C.
Tsai
, “
Phase detection of spin waves in yttrium iron garnet and metal induced nonreciprocity
,”
J. Appl. Phys.
125
,
053905
(
2019
).
113.
J.
Trossman
,
J.
Lim
,
W.
Bang
,
J. B.
Ketterson
,
C. C.
Tsai
, and
S. J.
Lee
, “
Effects of an adjacent metal surface on spin wave propagation
,”
AIP Adv.
8
,
056024
(
2018
).
114.
W. L.
Bongianni
, “
Magnetostatic propagation in a dielectric layered structure
,”
J. Appl. Phys.
43
,
2541
2548
(
1972
).
115.
O.
Gladii
,
M.
Haidar
,
Y.
Henry
,
M.
Kostylev
, and
M.
Bailleul
, “
Frequency nonreciprocity of surface spin wave in permalloy thin films
,”
Phys. Rev. B
93
,
054430
(
2016
).
116.
M.
Kataoka
, “
Spin waves in systems with long period helical spin density waves due to the antisymmetric and symmetric exchange interactions
,”
J. Phys. Soc. Jpn.
56
,
3635
3647
(
1987
).
117.
R. L.
Melcher
, “
Linear contribution to spatial dispersion in the spin-wave spectrum of ferromagnets
,”
Phys. Rev. Lett.
30
,
125
(
1973
).
118.
Y.
Li
,
W.
Cao
,
V. P.
Amin
,
Z.
Zhang
,
J.
Gibbons
,
J.
Sklenar
,
J.
Pearson
,
P. M.
Haney
,
M. D.
Stiles
,
W. E.
Bailey
,
V.
Novosad
,
A.
Hoffmann
, and
W.
Zhang
, “
Coherent spin pumping in a strongly coupled magnon-magnon hybrid system
,”
Phys. Rev. Lett.
124
,
117202
(
2020
).
119.
S.
Klingler
,
V.
Amin
,
S.
Geprägs
,
K.
Ganzhorn
,
H.
Maier-Flaig
,
M.
Althammer
,
H.
Huebl
,
R.
Gross
,
R. D.
McMichael
,
M. D.
Stiles
,
S. T.
Goennenwein
, and
M.
Weiler
, “
Spin-torque excitation of perpendicular standing spin waves in coupled YIG/Co heterostructures
,”
Phys. Rev. Lett.
120
,
127201
(
2018
).
120.
For example, sub-nanometer iridium or ruthenium can be used for RKKY interaction.
121.
P.
Bruno
, “
Theory of interlayer exchange interactions in magnetic multilayers
,”
J. Phys.: Condens. Matter
11
,
9403
9419
(
1999
).
122.
M.
Ishibashi
,
Y.
Shiota
,
T.
Li
,
S.
Funada
,
T.
Moriyama
, and
T.
Ono
, “
Switchable giant nonreciprocal frequency shift of propagating spin waves in synthetic antiferromagnets
,”
Sci. Adv.
6
,
eaaz6931
(
2020
).
123.
G. T.
Rado
and
J. R.
Weertman
, “
Spin-wave resonance in a ferromagnetic metal
,”
J. Phys. Chem. Solids
11
,
315
333
(
1959
).
124.
M.
Labrune
and
J.
Miltat
, “
Wall structures in ferro/antiferromagnetic exchange-coupled bilayers: A numerical micromagnetic approach
,”
J. Magn. Magn. Mater.
151
,
231
245
(
1995
).
125.
J.
Nogués
and
I. K.
Schuller
, “
Exchange bias
,”
J. Magn. Magn. Mater.
192
,
203
232
(
1999
).
126.
J.
Nogués
,
J.
Sort
,
V.
Langlais
,
V.
Skumryev
,
S.
Suriñach
,
J. S.
Muñoz
, and
M. D.
Baró
, “
Exchange bias in nanostructures
,”
Phys. Rep.
422
,
65
117
(
2005
).
127.
R. L.
Stamps
, “
Mechanisms for exchange bias
,”
J. Phys. D
33
,
R247
(
2000
).
128.
E. E.
Fullerton
,
J. S.
Jiang
, and
S. D.
Bader
, “
Hard/soft magnetic heterostructures: Model exchange-spring magnets
,”
J. Magn. Magn. Mater.
200
,
392
404
(
1999
).
129.
F.
Hellman
,
A.
Hoffmann
,
Y.
Tserkovnyak
,
G. S.
Beach
,
E. E.
Fullerton
,
C.
Leighton
,
A. H.
Macdonald
,
D. C.
Ralph
,
D. A.
Arena
,
H. A.
Dürr
,
P.
Fischer
,
J.
Grollier
,
J. P.
Heremans
,
T.
Jungwirth
,
A. V.
Kimel
,
B.
Koopmans
,
I. N.
Krivorotov
,
S. J.
May
,
A. K.
Petford-Long
,
J. M.
Rondinelli
,
N.
Samarth
,
I. K.
Schuller
,
A. N.
Slavin
,
M. D.
Stiles
,
O.
Tchernyshyov
,
A.
Thiaville
, and
B. L.
Zink
, “
Interface-induced phenomena in magnetism
,”
Rev. Mod. Phys.
89
,
025006
(
2017
).
130.
R.
Skomski
, “
Nanomagnetics
,”
J. Phys.: Condens. Matter
15
,
R841
(
2003
).
131.
G.
Binasch
,
P.
Grünberg
,
F.
Saurenbach
, and
W.
Zinn
, “
Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
,”
Phys. Rev. B
39
,
4828
(
1989
).
132.
Y.
Saito
,
N.
Tezuka
,
S.
Ikeda
, and
T.
Endoh
, “
Antiferromagnetic interlayer exchange coupling and large spin Hall effect in multilayer systems with Pt/Ir/Pt and Pt/Ir layers
,”
Phys. Rev. B
104
,
064439
(
2021
).
133.
P.
Deorani
,
J. H.
Kwon
, and
H.
Yang
, “
Nonreciprocity engineering in magnetostatic spin waves
,”
Curr. Appl. Phys.
14
,
S129
S135
(
2014
).
134.
K.
Shibata
,
K.
Kasahara
,
K.
Nakayama
,
V. V.
Kruglyak
,
M. M.
Aziz
, and
T.
Manago
, “
Dependence of non-reciprocity in spin wave excitation on antenna configuration
,”
J. Appl. Phys.
124
,
243901
(
2018
).
135.
Y.
Li
,
T.-H.
Lo
,
J.
Lim
,
J. E.
Pearson
,
R.
Divan
,
W.
Zhang
,
U.
Welp
,
W.-K.
Kwok
,
A.
Hoffmann
, and
V.
Novosad
, “
Unidirectional microwave transduction with chirality selected short-wavelength magnon excitations
,”
Appl. Phys. Lett.
123
,
22406
(
2023
).
136.
M.
Xu
,
K.
Yamamoto
,
J.
Puebla
,
K.
Baumgaertl
,
B.
Rana
,
K.
Miura
,
H.
Takahashi
,
D.
Grundler
,
S.
Maekawa
, and
Y.
Otani
, “
Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling
,”
Sci. Adv.
6
,
eabb1724
(
2020
).
137.
S.
Tateno
,
Y.
Nozaki
, and
Y.
Nozaki
, “
Highly nonreciprocal spin waves excited by magnetoelastic coupling in a Ni/Si bilayer
,”
Phys. Rev. Appl.
13
,
034074
(
2020
).
138.
M.
Küß
,
M.
Heigl
,
L.
Flacke
,
A.
Hefele
,
A.
Hörner
,
M.
Weiler
,
M.
Albrecht
, and
A.
Wixforth
, “
Symmetry of the magnetoelastic interaction of Rayleigh and shear horizontal magnetoacoustic waves in nickel thin films on LiTaO3
,”
Phys. Rev. Appl.
15
,
034046
(
2021
).
139.
P. J.
Shah
,
D. A.
Bas
,
I.
Lisenkov
,
A.
Matyushov
,
N. X.
Sun
, and
M. R.
Page
, “
Giant nonreciprocity of surface acoustic waves enabled by the magnetoelastic interaction
,”
Sci. Adv.
6
,
eabc5648
(
2020
).
140.
A.
Hernández-Mínguez
,
F.
Macià
,
J. M.
Hernàndez
,
J.
Herfort
, and
P. V.
Santos
, “
Large nonreciprocal propagation of surface acoustic waves in epitaxial ferromagnetic/semiconductor hybrid structures
,”
Phys. Rev. Appl.
13
,
044018
(
2020
).
141.
R.
Sasaki
,
Y.
Nii
,
Y.
Iguchi
, and
Y.
Onose
, “
Nonreciprocal propagation of surface acoustic wave in Ni/ LiNbO3
,”
Phys. Rev. B
95
,
020407
(
2017
).
142.
S.
Maekawa
and
M.
Tachiki
, “
Surface acoustic attenuation due to surface spin wave in ferro- and antiferromagnets
,”
AIP Conf. Proc.
29
,
542
543
(
1976
).
143.
J.
Puebla
,
Y.
Hwang
,
S.
Maekawa
, and
Y.
Otani
, “
Perspectives on spintronics with surface acoustic waves
,”
Appl. Phys. Lett.
120
,
220502
(
2022
).
144.
H.
Matsumoto
,
T.
Kawada
,
M.
Ishibashi
,
M.
Kawaguchi
, and
M.
Hayashi
, “
Large surface acoustic wave nonreciprocity in synthetic antiferromagnets
,”
Appl. Phys. Express
15
,
063003
(
2022
).
145.
M.
Küß
,
M.
Hassan
,
Y.
Kunz
,
A.
Hörner
,
M.
Weiler
, and
M.
Albrecht
, “
Nonreciprocal magnetoacoustic waves in synthetic antiferromagnets with Dzyaloshinskii-Moriya interaction
,”
Phys. Rev. B
107
,
024424
(
2023
).
146.
D. A.
Bas
,
R.
Verba
,
P. J.
Shah
,
S.
Leontsev
,
A.
Matyushov
,
M. J.
Newburger
,
N. X.
Sun
,
V.
Tyberkevich
,
A.
Slavin
, and
M. R.
Page
, “
Nonreciprocity of phase accumulation and propagation losses of surface acoustic waves in hybrid magnetoelastic heterostructures
,”
Phys. Rev. Appl.
18
,
044003
(
2022
).
147.
R.
Su
,
S.
Fu
,
Z.
Lu
,
J.
Shen
,
H.
Xu
,
Z.
Xu
,
R.
Wang
,
C.
Song
,
F.
Zeng
,
W.
Wang
, and
F.
Pan
, “
Over GHz bandwidth SAW filter based on 32° Y-X LN/ SiO2/poly-Si/Si heterostructure with multilayer electrode modulation
,”
Appl. Phys. Lett.
120
,
253501
(
2022
).
148.
C. S.
Hartmann
,
P. V.
Wright
,
R. J.
Kansy
, and
E. M.
Garber
, “
An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers
,” in
1982 Ultrasonics Symposium, San Diego, CA, 27–29 October 1982
(
IEEE
,
1982
), pp.
40
45
.
149.
Y.
Satoh
and
K.
Yamanouchi
, “
SAW unidirectional interdigital transducer with ultra-low insertion loss and wide band in 10MHz-10GHz range
,” in
Proceedings of the IEEE International Frequency Control Symposium and Exposition
(
IEEE
,
2005
), pp.
580
582
.
150.
Z. L.
Xiang
,
M.
Zhang
,
L.
Jiang
, and
P.
Rabl
, “
Intracity quantum communication via thermal microwave networks
,”
Phys. Rev. X
7
,
011035
(
2017
).
151.
B.
Vermersch
,
P. O.
Guimond
,
H.
Pichler
, and
P.
Zoller
, “
Quantum state transfer via noisy photonic and phononic waveguides
,”
Phys. Rev. Lett.
118
,
133601
(
2017
).
152.
É.
Dumur
,
K. J.
Satzinger
,
G. A.
Peairs
,
M. H.
Chou
,
A.
Bienfait
,
H. S.
Chang
,
C. R.
Conner
,
J.
Grebel
,
R. G.
Povey
,
Y. P.
Zhong
, and
A. N.
Cleland
, “
Quantum communication with itinerant surface acoustic wave phonons
,”
npj Quantum Inf.
7
,
173
(
2021
).
153.
A. F.
Franco
and
P.
Landeros
, “
Enhancement of the spin-wave nonreciprocity in antiferromagnetically coupled multilayers with dipolar and interfacial Dzyaloshinskii-Moriya interactions
,”
Phys. Rev. B
102
,
184424
(
2020
).
154.
X.
Zhang
,
C. L.
Zou
,
N.
Zhu
,
F.
Marquardt
,
L.
Jiang
, and
H. X.
Tang
, “
Magnon dark modes and gradient memory
,”
Nat. Commun.
6
,
8914
(
2015
).
155.
X.
Zhang
,
C. L.
Zou
,
L.
Jiang
, and
H. X.
Tang
, “
Cavity magnomechanics
,”
Sci. Adv.
2
,
e1501286
(
2016
).
156.
M.
Goryachev
,
W. G.
Farr
,
D. L.
Creedon
,
Y.
Fan
,
M.
Kostylev
, and
M. E.
Tobar
, “
High-cooperativity cavity QED with magnons at microwave frequencies
,”
Phys. Rev. Appl.
2
,
054002
(
2014
).
157.
N.
Kostylev
,
M.
Goryachev
, and
M. E.
Tobar
, “
Superstrong coupling of a microwave cavity to yttrium iron garnet magnons
,”
Appl. Phys. Lett.
108
,
062402
(
2016
).
158.
C.
Match
,
M.
Harder
,
L.
Bai
,
P.
Hyde
, and
C. M.
Hu
, “
Transient response of the cavity magnon-polariton
,”
Phys. Rev. B
99
,
134445
(
2019
).
159.
M.
Harder
,
L.
Bai
,
P.
Hyde
, and
C. M.
Hu
, “
Topological properties of a coupled spin-photon system induced by damping
,”
Phys. Rev. B
95
,
214411
(
2017
).
160.
B.
Bhoi
,
T.
Cliff
,
I. S.
Maksymov
,
M.
Kostylev
,
R.
Aiyar
,
N.
Venkataramani
,
S.
Prasad
, and
R. L.
Stamps
, “
Study of photon–magnon coupling in a YIG-film split-ring resonant system
,”
J. Appl. Phys.
116
,
243906
(
2014
).
161.
B.
Bhoi
,
B.
Kim
,
J.
Kim
,
Y. J.
Cho
, and
S. K.
Kim
, “
Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film
,”
Sci. Rep.
7
,
11930
(
2017
).
162.
X.
Zhang
,
T.
Liu
,
M. E.
Flatté
, and
H. X.
Tang
, “
Electric-field coupling to spin waves in a centrosymmetric ferrite
,”
Phys. Rev. Lett.
113
,
037202
(
2014
).
163.
B.
Hetényi
,
A.
Mook
,
J.
Klinovaja
, and
D.
Loss
, “
Long-distance coupling of spin qubits via topological magnons
,”
Phys. Rev. B
106
,
235409
(
2022
).
164.
T.
Neuman
,
D. S.
Wang
, and
P.
Narang
, “
Nanomagnonic cavities for strong spin-magnon coupling and magnon-mediated spin-spin interactions
,”
Phys. Rev. Lett.
125
,
247702
(
2020
).
165.
W.
Xiong
,
M.
Tian
,
G. Q.
Zhang
, and
J. Q.
You
, “
Strong long-range spin-spin coupling via a Kerr magnon interface
,”
Phys. Rev. B
105
,
245310
(
2022
).
166.
N. J.
Lambert
,
J. A.
Haigh
,
S.
Langenfeld
,
A. C.
Doherty
, and
A. J.
Ferguson
, “
Cavity-mediated coherent coupling of magnetic moments
,”
Phys. Rev. A
93
,
021803
(
2016
).
167.
Y.
Li
,
V. G.
Yefremenko
,
M.
Lisovenko
,
C.
Trevillian
,
T.
Polakovic
,
T. W.
Cecil
,
P. S.
Barry
,
J.
Pearson
,
R.
Divan
,
V.
Tyberkevych
,
C. L.
Chang
,
U.
Welp
,
W. K.
Kwok
, and
V.
Novosad
, “
Coherent coupling of two remote magnonic resonators mediated by superconducting circuits
,”
Phys. Rev. Lett.
128
,
047701
(
2022
).
168.
C. C.
Rusconi
,
M. J.
Schuetz
,
J.
Gieseler
,
M. D.
Lukin
, and
O.
Romero-Isart
, “
Hybrid architecture for engineering magnonic quantum networks
,”
Phys. Rev. A
100
,
022343
(
2019
).
169.
Y. L.
Ren
,
J. K.
Xie
,
X. K.
Li
,
S. L.
Ma
, and
F. L.
Li
, “
Long-range generation of a magnon-magnon entangled state
,”
Phys. Rev. B
105
,
094422
(
2022
).
170.
H. J.
Carmichael
, “
Quantum trajectory theory for cascaded open systems
,”
Phys. Rev. Lett.
70
,
2273
(
1993
).
171.
C. W.
Gardiner
, “
Driving a quantum system with the output field from another driven quantum system
,”
Phys. Rev. Lett.
70
,
2269
(
1993
).
172.
J. I.
Cirac
,
P.
Zoller
,
H. J.
Kimble
, and
H.
Mabuchi
, “
Quantum state transfer and entanglement distribution among distant nodes in a quantum network
,”
Phys. Rev. Lett.
78
,
3221
(
1997
).
173.
A.
Sørensen
and
K.
Mølmer
, “
Quantum computation with ions in thermal motion
,”
Phys. Rev. Lett.
82
,
1971
(
1999
).
174.
J.
Majer
,
J. M.
Chow
,
J. M.
Gambetta
,
J.
Koch
,
B. R.
Johnson
,
J. A.
Schreier
,
L.
Frunzio
,
D. I.
Schuster
,
A. A.
Houck
,
A.
Wallraff
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Coupling superconducting qubits via a cavity bus
,”
Nature
449
,
443
447
(
2007
).
175.
K.
Stannigel
,
P.
Rabl
, and
P.
Zoller
, “
Driven-dissipative preparation of entangled states in cascaded quantum-optical networks
,”
New J. Phys.
14
,
063014
(
2012
).
176.
J.
Niu
,
L.
Zhang
,
Y.
Liu
,
J.
Qiu
,
W.
Huang
,
J.
Huang
,
H.
Jia
,
J.
Liu
,
Z.
Tao
,
W.
Wei
,
Y.
Zhou
,
W.
Zou
,
Y.
Chen
,
X.
Deng
,
X.
Deng
,
C.
Hu
,
L.
Hu
,
J.
Li
,
D.
Tan
,
Y.
Xu
,
F.
Yan
,
T.
Yan
,
S.
Liu
,
Y.
Zhong
,
A. N.
Cleland
, and
D.
Yu
, “
Low-loss interconnects for modular superconducting quantum processors
,”
Nat. Electron.
6
,
235
241
(
2023
).
177.
D.
Awschalom
,
K. K.
Berggren
,
H.
Bernien
,
S.
Bhave
,
L. D.
Carr
,
P.
Davids
,
S. E.
Economou
,
D.
Englund
,
A.
Faraon
,
M.
Fejer
,
S.
Guha
,
M. V.
Gustafsson
,
E.
Hu
,
L.
Jiang
,
J.
Kim
,
B.
Korzh
,
P.
Kumar
,
P. G.
Kwiat
,
M.
Lončar
,
M. D.
Lukin
,
D. A.
Miller
,
C.
Monroe
,
S. W.
Nam
,
P.
Narang
,
J. S.
Orcutt
,
M. G.
Raymer
,
A. H.
Safavi-Naeini
,
M.
Spiropulu
,
K.
Srinivasan
,
S.
Sun
,
J.
Vučković
,
E.
Waks
,
R.
Walsworth
,
A. M.
Weiner
, and
Z.
Zhang
, “
Development of quantum interconnects (QuICs) for next-generation information technologies
,”
PRX Quantum
2
,
017002
(
2021
).
178.
L.
Jiang
,
J. M.
Taylor
,
A. S.
Sørensen
, and
M. D.
Lukin
, “
Distributed quantum computation based on small quantum registers
,”
Phys. Rev. A
76
,
062323
(
2007
).
179.
H. J.
Kimble
, “
The quantum internet
,”
Nature
453
,
1023
1030
(
2008
).
180.
C.
Monroe
,
R.
Raussendorf
,
A.
Ruthven
,
K. R.
Brown
,
P.
Maunz
,
L. M.
Duan
, and
J.
Kim
, “
Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects
,”
Phys. Rev. A
89
,
022317
(
2014
).
181.
K. S.
Chou
,
J. Z.
Blumoff
,
C. S.
Wang
,
P. C.
Reinhold
,
C. J.
Axline
,
Y. Y.
Gao
,
L.
Frunzio
,
M. H.
Devoret
,
L.
Jiang
, and
R. J.
Schoelkopf
, “
Deterministic teleportation of a quantum gate between two logical qubits
,”
Nature
561
,
368
373
(
2018
).
182.
N.
LaRacuente
,
K. N.
Smith
,
P.
Imany
,
K. L.
Silverman
, and
F. T.
Chong
, “
Modeling short-range microwave networks to scale superconducting quantum computation
,” arXiv:2201.08825 (
2022
).
183.
E.
McKinney
,
M.
Xia
,
C.
Zhou
,
P.
Lu
,
M.
Hatridge
, and
A. K.
Jones
, “
Co-designed architectures for modular superconducting quantum computers
,” arXiv:2205.04387 (
2022
).
184.
C. J.
Axline
,
L. D.
Burkhart
,
W.
Pfaff
,
M.
Zhang
,
K.
Chou
,
P.
Campagne-Ibarcq
,
P.
Reinhold
,
L.
Frunzio
,
S. M.
Girvin
,
L.
Jiang
,
M. H.
Devoret
, and
R. J.
Schoelkopf
, “
On-demand quantum state transfer and entanglement between remote microwave cavity memories
,”
Nat. Phys.
14
,
705
710
(
2018
).
185.
P.
Campagne-Ibarcq
,
E.
Zalys-Geller
,
A.
Narla
,
S.
Shankar
,
P.
Reinhold
,
L.
Burkhart
,
C.
Axline
,
W.
Pfaff
,
L.
Frunzio
,
R. J.
Schoelkopf
, and
M. H.
Devoret
, “
Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions
,”
Phys. Rev. Lett.
120
,
200501
(
2018
).
186.
P.
Kurpiers
,
P.
Magnard
,
T.
Walter
,
B.
Royer
,
M.
Pechal
,
J.
Heinsoo
,
Y.
Salathé
,
A.
Akin
,
S.
Storz
,
J. C.
Besse
,
S.
Gasparinetti
,
A.
Blais
, and
A.
Wallraff
, “
Deterministic quantum state transfer and remote entanglement using microwave photons
,”
Nature
558
,
264
267
(
2018
).
187.
P.
Magnard
,
S.
Storz
,
P.
Kurpiers
,
J.
Schar
,
F.
Marxer
,
J.
Lütolf
,
T.
Walter
,
J. C.
Besse
,
M.
Gabureac
,
K.
Reuer
,
A.
Akin
,
B.
Royer
,
A.
Blais
, and
A.
Wallraff
, “
Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems
,”
Phys. Rev. Lett.
125
,
260502
(
2020
).
188.
J.
Koch
,
A. A.
Houck
,
K. L.
Hur
, and
S. M.
Girvin
, “
Time-reversal-symmetry breaking in circuit-QED-based photon lattices
,”
Phys. Rev. A
82
,
043811
(
2010
).
189.
A.
Kamal
,
J.
Clarke
, and
M. H.
Devoret
, “
Noiseless non-reciprocity in a parametric active device
,”
Nat. Phys.
7
,
311
315
(
2011
).
190.
P. O.
Guimond
,
B.
Vermersch
,
M. L.
Juan
,
A.
Sharafiev
,
G.
Kirchmair
, and
P.
Zoller
, “
A unidirectional on-chip photonic interface for superconducting circuits
,”
npj Quantum Inf.
6
,
32
(
2020
).
191.
Y. X.
Zhang
,
C. R. I.
Carceller
,
M.
Kjaergaard
, and
A. S.
Sørensen
, “
Charge-noise insensitive chiral photonic interface for waveguide circuit QED
,”
Phys. Rev. Lett.
127
,
233601
(
2021
).
192.
J.
Kerckhoff
,
K.
Lalumière
,
B. J.
Chapman
,
A.
Blais
, and
K. W.
Lehnert
, “
On-chip superconducting microwave circulator from synthetic rotation
,”
Phys. Rev. Appl.
4
,
034002
(
2015
).
193.
N.
Gheeraert
,
S.
Kono
, and
Y.
Nakamura
, “
Programmable directional emitter and receiver of itinerant microwave photons in a waveguide
,”
Phys. Rev. A
102
,
053720
(
2020
).
194.
B. J.
Chapman
,
E. I.
Rosenthal
, and
K. W.
Lehnert
, “
Design of an on-chip superconducting microwave circulator with octave bandwidth
,”
Phys. Rev. Appl.
11
,
044048
(
2019
).
195.
B.
Abdo
,
O.
Jinka
,
N. T.
Bronn
,
S.
Olivadese
, and
M.
Brink
, “
High-fidelity qubit readout using interferometric directional Josephson devices
,”
PRX Quantum
2
,
040360
(
2021
).
196.
B.
Kannan
,
A.
Almanakly
,
Y.
Sung
,
A. D.
Paolo
,
D. A.
Rower
,
J.
Braumüller
,
A.
Melville
,
B. M.
Niedzielski
,
A.
Karamlou
,
K.
Serniak
,
A.
Vepsäläinen
,
M. E.
Schwartz
,
J. L.
Yoder
,
R.
Winik
,
J. I.
Wang
,
T. P.
Orlando
,
S.
Gustavsson
,
J. A.
Grover
, and
W. D.
Oliver
, “
On-demand directional microwave photon emission using waveguide quantum electrodynamics
,”
Nat. Phys.
19
,
394
(
2023
).
197.
B. J.
Chapman
,
E. I.
Rosenthal
,
J.
Kerckhoff
,
B. A.
Moores
,
L. R.
Vale
,
J. A.
Mates
,
G. C.
Hilton
,
K.
Lalumière
,
A.
Blais
, and
K. W.
Lehnert
, “
Widely tunable on-chip microwave circulator for superconducting quantum circuits
,”
Phys. Rev. X
7
,
041043
(
2017
).
198.
E. I.
Rosenthal
,
B. J.
Chapman
,
A. P.
Higginbotham
,
J.
Kerckhoff
, and
K. W.
Lehnert
, “
Breaking Lorentz reciprocity with frequency conversion and delay
,”
Phys. Rev. Lett.
119
,
147703
(
2017
).
199.
Y. Y.
Gao
,
M. A.
Rol
,
S.
Touzard
, and
C.
Wang
, “
Practical guide for building superconducting quantum devices
,”
PRX Quantum
2
,
040202
(
2021
).
200.
Y. Y.
Wang
,
S. V.
Geldern
,
T.
Connolly
,
Y. X.
Wang
,
A.
Shilcusky
,
A.
McDonald
,
A. A.
Clerk
, and
C.
Wang
, “
Low-loss ferrite circulator as a tunable chiral quantum system
,”
Phys. Rev. Appl.
16
,
064066
(
2021
).
201.
T.
Yu
,
X.
Zhang
,
S.
Sharma
,
Y. M.
Blanter
, and
G. E.
Bauer
, “
Chiral coupling of magnons in waveguides
,”
Phys. Rev. B
101
,
094414
(
2020
).
202.
X.
Zhang
,
A.
Galda
,
X.
Han
,
D.
Jin
, and
V. M.
Vinokur
, “
Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons
,”
Phys. Rev. Appl.
13
,
044039
(
2020
).
203.
N.
Zhu
,
X.
Han
,
C. L.
Zou
,
M.
Xu
, and
H. X.
Tang
, “
Magnon-photon strong coupling for tunable microwave circulators
,”
Phys. Rev. A
101
,
043842
(
2020
).
204.
J. C.
Owens
,
M. G.
Panetta
,
B.
Saxberg
,
G.
Roberts
,
S.
Chakram
,
R.
Ma
,
A.
Vrajitoarea
,
J.
Simon
, and
D. I.
Schuster
, “
Chiral cavity quantum electrodynamics
,”
Nat. Phys.
18
,
1048
1052
(
2022
).
205.
Y. P.
Wang
,
J. W.
Rao
,
Y.
Yang
,
P. C.
Xu
,
Y. S.
Gui
,
B. M.
Yao
,
J. Q.
You
, and
C. M.
Hu
, “
Nonreciprocity and unidirectional invisibility in cavity magnonics
,”
Phys. Rev. Lett.
123
,
127202
(
2019
).
206.
J.
Krause
,
C.
Dickel
,
E.
Vaal
,
M.
Vielmetter
,
J.
Feng
,
R.
Bounds
,
G.
Catelani
,
J. M.
Fink
, and
Y.
Ando
, “
Magnetic field resilience of three-dimensional transmons with thin-film Al/ AlOx/Al Josephson junctions approaching 1 T
,”
Phys. Rev. Appl.
17
,
034032
(
2022
).
You do not currently have access to this content.