Onsite gain-loss-induced topological braiding principle of non-Hermitian energy bands is theoretically formulated in multiband lattice models with Hermitian hopping amplitudes. Braid phase transition occurs when the gain-loss parameter is tuned across exceptional point degeneracy. Laboratory realizable effective-Hamiltonians are proposed to realize braid groups B 2 and B 3 of two and three bands, respectively. While B 2 is trivially Abelian, the group B 3 features non-Abelian braiding and energy permutation originating from the collective behavior of multiple exceptional points. Phase diagrams with respect to lattice parameters to realize braid group generators and their non-commutativity are shown. The proposed theory is conducive to synthesizing exceptional materials for applications in topological computation and information processing.

1.
A.
Kitaev
, “
Anyons in an exactly solved model and beyond
,”
Ann. Phys.
321
,
2
111
(
2006
).
2.
A.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
30
(
2003
).
3.
C.
Nayak
,
S. H.
Simon
,
A.
Stern
,
M.
Freedman
, and
S.
Das Sarma
, “
Non-Abelian anyons and topological quantum computation
,”
Rev. Mod. Phys.
80
,
1083
(
2008
).
4.
Google Quantum AI and Collaborators
. “
Non-Abelian braiding of graph vertices in a superconducting processor
,”
Nature
618
,
264
269
(
2023
).
5.
J.
Ren
and
N. A.
Sinitsyn
, “
Braid group and topological phase transitions in nonequilibrium stochastic dynamics
,”
Phys. Rev. E
87
,
050101(R)
(
2013
).
6.
H.
Hu
and
E.
Zhao
, “
Knots and non-Hermitian Bloch bands
,”
Phys. Rev. Lett.
126
,
010401
(
2021
).
7.
K.
Wang
,
A.
Dutt
,
C. C.
Wojcik
, and
S.
Fan
, “
Topological complex-energy braiding of non-Hermitian bands
,”
Nature
598
,
59
(
2021
).
8.
Y. S. S.
Patil
,
J.
Höller
,
P. A.
Henry
,
C.
Guria
,
Y.
Zhang
,
L.
Jiang
,
N.
Kralj
,
N.
Read
, and
J. G. E.
Harris
, “
Measuring the knot of non-Hermitian degeneracies and non-commuting braids
,”
Nature
607
,
271
(
2022
).
9.
Y.
Yu
,
L.-W.
Yu
,
W.
Zhang
,
H.
Zhang
,
X.
Ouyang
,
Y.
Liu
,
D.-L.
Deng
, and
L.-M.
Duan
, “
Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins
,”
npj Quantum Inf.
8
,
116
(
2022
).
10.
Q.
Zhang
,
Y.
Li
,
H.
Sun
,
X.
Liu
,
L.
Zhao
,
X.
Feng
,
X.
Fan
, and
C.
Qiu
, “
Observation of acoustic non-Hermitian Bloch braids and associated topological phase transitions
,”
Phys. Rev. Lett.
130
,
017201
(
2023
).
11.
Q.
Zhang
,
L.
Zhao
,
X.
Liu
,
X.
Feng
,
L.
Xiong
,
W.
Wu
, and
C.
Qiu
, “
Experimental characterization of three-band braid relations in non-Hermitian acoustic lattices
,”
Phys. Rev. Res.
5
,
L022050
(
2023
).
12.
C. C.
Wojcik
,
K.
Wang
,
A.
Dutt
,
J.
Zhong
, and
S.
Fan
, “
Eigenvalue topology of non-Hermitian band structures in two and three dimensions
,”
Phys. Rev. B
106
,
L161401
(
2022
).
13.
M.
Parto
,
C.
Leefmans
,
J.
Williams
,
F.
Nori
, and
A.
Marandi
, “
Non-Abelian effects in dissipative photonic topological lattices
,”
Nat. Commun.
14
,
1440
(
2023
).
14.
Y.
Li
,
X.
Ji
,
Y.
Chen
,
X.
Yan
, and
X.
Yang
, “
Topological energy braiding of non-Bloch bands
,”
Phys. Rev. B
106
,
195425
(
2022
).
15.
M.-M.
Cao
,
K.
Li
,
W.-D.
Zhao
,
W.-X.
Guo
,
B.-X.
Qi
,
X.-Y.
Chang
,
Z.-C.
Zhou
,
Y.
Xu
, and
L.-M.
Duan
, “
Probing complex-energy topology via non-Hermitian absorption spectroscopy in a trapped ion simulator
,”
Phys. Rev. Lett.
130
,
163001
(
2023
).
16.
B.
Midya
,
H.
Zhao
, and
L.
Feng
, “
Non-Hermitian photonics promises exceptional topology of light
,”
Nat. Commun.
9
,
2674
(
2018
).
17.
E. J.
Bergholtz
,
J. C.
Budich
, and
F. K.
Kunst
, “
Exceptional topology of non-Hermitian systems
,”
Rev. Mod. Phys.
93
,
015005
(
2021
).
18.
X.
Zhang
,
T.
Zhang
,
M.-H.
Lu
, and
Y.-F.
Chen
, “
A review on non-Hermitian skin effect
,”
Adv. Phys.
7
,
2109431
(
2022
).
19.
K.
Ding
,
C.
Fang
, and
G.
Ma
, “
Non-Hermitian topology and exceptional-point geometries
,”
Nat. Rev. Phys.
4
,
745
760
(
2022
).
20.
Z.
Gong
,
Y.
Ashida
,
K.
Kawabata
,
K.
Takasan
,
S.
Higashikawa
, and
M.
Ueda
, “
Topological phases of non-Hermitian systems
,”
Phys. Rev. X
8
,
031079
(
2018
).
21.
H.
Zhao
,
X.
Qiao
,
T.
Wu
,
B.
Midya
,
S.
Longhi
, and
L.
Feng
, “
Non-Hermitian topological light steering
,”
Science
365
,
1163
(
2019
).
22.
S.
Weidemann
,
M.
Kremer
,
T.
Helbig
,
T.
Hofmann
,
A.
Stegmaier
,
M.
Greiter
,
R.
Thomale
, and
A.
Szameit
, “
Topological funneling of light
,”
Science
368
,
311
(
2020
).
23.
L.
Xiao
,
T.
Deng
,
K.
Wang
,
G.
Zhu
,
Z.
Wang
,
W.
Yi
, and
P.
Xue
, “
Non-Hermitian bulk–boundary correspondence in quantum dynamics
,”
Nat. Phys.
16
,
761
766
(
2020
).
24.
H.
Shen
,
B.
Zhen
, and
L.
Fu
, “
Topological band theory for non-Hermitian Hamiltonians
,”
Phys. Rev. Lett.
120
,
146402
(
2018
).
25.
Z.
Yang
,
C.-K.
Chiu
,
C.
Fang
, and
J.
Hu
, “
Jones polynomial and knot transitions in Hermitian and non-Hermitian topological semimetals
,”
Phys. Rev. Lett.
124
,
186402
(
2020
).
26.
S.
Weidemann
,
M.
Kremer
,
S.
Longhi
, and
A.
Szameit
, “
Topological triple phase transition in non-Hermitian Floquet quasicrystals
,”
Nature
601
,
354
359
(
2022
).
27.
Z.
Li
,
K.
Ding
, and
G.
Ma
, “
Eigenvalue knots and their isotopic equivalence in three-state non-Hermitian systems
,”
Phys. Rev. Res.
5
,
023038
(
2023
).
28.
B.
Midya
, “
Topological directed amplification
,”
Phys. Rev. A
106
,
053513
(
2022
).
29.
Z.
Gao
,
X.
Qiao
,
M.
Pan
,
S.
Wu
,
J.
Yim
,
K.
Chen
,
B.
Midya
,
L.
Ge
, and
L.
Feng
, “
Two-dimensional reconfigurable non-Hermitian gauged laser array
,”
Phys. Rev. Lett.
130
,
263801
(
2023
).
30.
A.
Müllers
,
B.
Santra
,
C.
Baals
,
J.
Jiang
,
J.
Benary
,
R.
Labouvie
,
D. A.
Zezyulin
,
V. V.
Konotop
, and
H.
Ott
, “
Coherent perfect absorption of nonlinear matter waves
,”
Sci. Adv.
4
,
eaat6539
(
2018
).
31.
L. H.
Kauffman
,
Knots and Physics
(
World Scientific
,
Singapore
,
2013
), Vol.
53
.
32.
C.
Kassel
and
V.
Turaev
,
Braid Groups
(
Springer
,
2008
).
33.
E. J.
Pap
,
D.
Boer
, and
H.
Waalkens
, “
Non-Abelian nature of systems with multiple exceptional points
,”
Phys. Rev. A
98
,
023818
(
2018
).
34.
Q.
Zhong
,
M.
Khajavikhan
,
D. N.
Christodoulides
, and
R.
El-Ganainy
, “
Winding around non-Hermitian singularities
,”
Nat. Commun.
9
,
4808
(
2018
).
35.
C.-X.
Guo
,
S.
Chen
,
K.
Ding
, and
H.
Hu
, “
Exceptional non-Abelian topology in multiband non-Hermitian systems
,”
Phys. Rev. Lett.
130
,
157201
(
2023
).
36.
R.
Keil
,
C.
Poli
,
M.
Heinrich
,
J.
Arkinstall
,
G.
Weihs
,
H.
Schomerus
, and
A.
Szameit
, “
Universal sign control of coupling in tight-binding lattices
,”
Phys. Rev. Lett.
116
,
213901
(
2016
).
37.
X.
Zhang
,
G.
Li
,
Y.
Liu
,
T.
Tai
,
R.
Thomale
, and
C. H.
Lee
, “
Tidal surface states as fingerprints of non-Hermitian nodal knot metals
,”
Commun. Phys.
4
,
47
(
2021
).
38.
H.
Park
,
W.
Gao
,
X.
Zhang
, and
S. S.
Oh
, “
Nodal lines in momentum space: Topological invariants and recent realizations in photonic and other systems
,”
Nanophotonics
11
,
2779
2801
(
2022
).
39.
Y.
Ota
,
K.
Takata
,
T.
Ozawa
,
A.
Amo
,
Z.
Jia
,
B.
Kante
,
M.
Notomi
,
Y.
Arakawa
, and
S.
Iwamoto
, “
Active topological photonics
,”
Nanophotonics
9
,
547
567
(
2020
).

Supplementary Material

You do not currently have access to this content.