Tensegrity metamaterials are a type of artificial materials that can exploit the tunable nonlinear mechanical behavior of the constituent tensegrity units. Here, we present reduced-order analytical models describing the prestrain-induced bistable effect of two particular tensegrity units. Closed-form expressions of the critical prestrain at which a unit transitions into a bistable regime are derived. Such expressions depend only on the geometry of the units. The predictions of the reduced-order model are verified by numerical simulations and by the realization of physical models. The present results can be generalized to analogous units with polygonal base, and the proposed tensegrity units can be assembled together to form one-dimensional metamaterials with tailorable nonlinear features such as multistability and solitary wave propagation.

1.
P.
Jiao
, “
Hierarchical metastructures with programmable stiffness and zero Poisson's ratio
,”
APL Mater.
8
,
051109
(
2020
).
2.
S.
Bonfanti
,
R.
Guerra
,
M.
Zaiser
, and
S.
Zapperi
, “
Digital strategies for structured and architected materials design
,”
APL Mater.
9
,
020904
(
2021
).
3.
S.
Shan
,
S. H.
Kang
,
J. R.
Raney
,
P.
Wang
,
L.
Fang
,
F.
Candido
,
J. A.
Lewis
, and
K.
Bertoldi
, “
Multistable architected materials for trapping elastic strain energy
,”
Adv. Mater.
27
,
4296
4301
(
2015
).
4.
J. R.
Raney
,
N.
Nadkarni
,
C.
Daraio
,
D. M.
Kochmann
,
J. A.
Lewis
, and
K.
Bertoldi
, “
Stable propagation of mechanical signals in soft media using stored elastic energy
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
9722
9727
(
2016
).
5.
B.
Deng
,
P.
Wang
,
V.
Tournat
, and
K.
Bertoldi
, “
Nonlinear transition waves in free-standing bistable chains
,”
J. Mech. Phys. Solids
136
,
103661
(
2020
).
6.
J.
Hua
,
H.
Lei
,
C. F.
Gao
,
X.
Guo
, and
D.
Fang
, “
Parameters analysis and optimization of a typical multistable mechanical metamaterial
,”
Extreme Mech. Lett.
35
,
100640
(
2020
).
7.
H.
Yang
and
L.
Ma
, “
1D to 3D multi-stable architected materials with zero Poisson's ratio and controllable thermal expansion
,”
Mater. Des.
188
,
108430
(
2020
).
8.
R.
Motro
,
Tensegrity: Structural Systems for the Future
(
Kogan Page Science
,
London
,
2003
).
9.
R. E.
Skelton
and
M. C.
de Oliveira
,
Tensegrity Systems
(
Springer
,
Boston, MA
,
2009
).
10.
R.
Connelly
and
S. D.
Guest
,
Frameworks, Tensegrities, and Symmetry
(
Cambridge University Press
,
2022
).
11.
I. J.
Oppenheim
and
W. O.
Williams
, “
Geometric effects in an elastic tensegrity structure
,”
J. Elasticity
59
,
51
65
(
2000
).
12.
I. J.
Oppenheim
and
W. O.
Williams
, “
Vibration of an elastic tensegrity structure
,”
Eur. J. Mech. A/Solids
20
,
1023
1031
(
2001
).
13.
F.
Fraternali
,
G.
Carpentieri
, and
A.
Amendola
, “
On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms
,”
J. Mech. Phys. Solids
74
,
136
157
(
2015
).
14.
I. J.
Oppenheim
and
W. O.
Williams
, “
Tensegrity prisms as adaptive structures
,” in
Proceedings of ASME International Mechanical Engineering Congress and Exposition: Adaptive Structures and Material Systems
(
ASME
,
1997
), pp.
113
120
.
15.
K.
Liu
,
J.
Wu
,
G. H.
Paulino
, and
H. J.
Qi
, “
Programmable deployment of tensegrity structures by stimulus-responsive polymers
,”
Sci. Rep.
7
,
3511
(
2017
).
16.
A.
Amendola
,
A.
Krushynska
,
C.
Daraio
,
N. M.
Pugno
, and
F.
Fraternali
, “
Tuning frequency band gaps of tensegrity mass-spring chains with local and global prestress
,”
Int. J. Solids Struct.
155
,
47
56
(
2018
).
17.
K.
Pajunen
,
P.
Celli
, and
C.
Daraio
, “
Prestrain-induced bandgap tuning in 3D-printed tensegrity-inspired lattice structures
,”
Extreme Mech. Lett.
44
,
101236
(
2021
).
18.
F.
Fraternali
,
L.
Senatore
, and
C.
Daraio
, “
Solitary waves on tensegrity lattices
,”
J. Mech. Phys. Solids
60
,
1137
1144
(
2012
).
19.
C.
Daraio
and
F.
Fraternali
, “
Method and apparatus for wave generation and detection using tensegrity structures
,” U.S. Patent No. 8,616,328 (
2013
).
20.
F.
Fraternali
,
G.
Carpentieri
,
A.
Amendola
,
R. E.
Skelton
, and
V. F.
Nesterenko
, “
Multiscale tunability of solitary wave dynamics in tensegrity metamaterials
,”
Appl. Phys. Lett.
105
,
201903
(
2014
).
21.
C.
Davini
,
A.
Micheletti
, and
P.
Podio-Guidugli
, “
On the impulsive dynamics of T3 tensegrity chains
,”
Meccanica
51
,
2763
2776
(
2016
).
22.
A.
Micheletti
,
G.
Ruscica
, and
F.
Fraternali
, “
On the compact wave dynamics of tensegrity beams in multiple dimensions
,”
Nonlinear Dyn.
98
,
2737
2753
(
2019
).
23.
J. J.
Rimoli
and
R. K.
Pal
, “
Mechanical response of 3-dimensional tensegrity lattices
,”
Composites, Part B
115
,
30
42
(
2017
).
24.
A.
Al Sabouni-Zawadzka
and
W.
Gilewski
, “
Smart metamaterial based on the simplex tensegrity pattern
,”
Materials
11
,
673
(
2018
).
25.
R. K.
Pal
,
M.
Ruzzene
, and
J. J.
Rimoli
, “
Tunable wave propagation by varying prestrain in tensegrity-based periodic media
,”
Extreme Mech. Lett.
22
,
149
156
(
2018
).
26.
D.
De Tommasi
,
G.
Puglisi
, and
F.
Trentadue
, “
Elastic response of an optimal tensegrity-type metamaterial
,”
Front. Mater.
6
,
24
(
2019
).
27.
F. A.
Santos
, “
Towards a novel energy dissipation metamaterial with tensegrity architecture
,”
Adv. Mater.
35
,
2300639
(
2023
).
28.
K.
Liu
,
T.
Zegard
,
P. P.
Pratapa
, and
G. H.
Paulino
, “
Unraveling tensegrity tessellations for metamaterials with tunable stiffness and bandgaps
,”
J. Mech. Phys.
131
,
147
166
(
2019
).
29.
K.
Pajunen
,
P.
Johanns
,
R. K.
Pal
,
J. J.
Rimoli
, and
C.
Daraio
, “
Design and impact response of 3D-printable tensegrity-inspired structures
,”
Mater. Des.
182
,
107966
(
2019
).
30.
C.
Intrigila
,
A.
Micheletti
,
N. A.
Nodargi
,
E.
Artioli
, and
P.
Bisegna
, “
Fabrication and experimental characterization of a bistable tensegrity-like unit for lattice metamaterials
,”
Addit. Manuf.
57
,
102946
(
2022
).
31.
Z.
Vangelatos
,
A.
Micheletti
,
C. P.
Grigoropoulos
, and
F.
Fraternali
, “
Design and testing of bistable lattices with tensegrity architecture and nanoscale features fabricated by multiphoton lithography
,”
Nanomaterials
10
,
652
(
2020
).
32.
J.
Bauer
,
J. A.
Kraus
,
C.
Crook
,
J. J.
Rimoli
, and
L.
Valdevit
, “
Tensegrity metamaterials: Toward failure-resistant engineering systems through delocalized deformation
,”
Adv. Mater.
33
,
2005647
(
2021
).
33.
H. Y.
Jeong
,
S.-C.
An
, and
Y. C.
Jun
, “
Light activation of 3D-printed structures: From millimeter to sub-micrometer scale
,”
Nanophotonics
11
,
461
486
(
2022
).
34.
L.-Y.
Hsu
,
P.
Mainik
,
A.
Münchinger
,
S.
Lindenthal
,
T.
Spratte
,
A.
Welle
,
J.
Zaumseil
,
C.
Selhuber-Unkel
,
M.
Wegener
, and
E.
Blasco
, “
A facile approach for 4D microprinting of multi-photoresponsive actuators
,”
Adv. Mater. Technol.
8
,
2200801
(
2023
).
35.
M.
Defossez
, “
Shape memory effect in tensegrity structures
,”
Mech. Res. Commun.
30
,
311
316
(
2003
).
36.
A.
Micheletti
, “
Bistable regimes in an elastic tensegrity system
,”
Proc. R. Soc. A.
469
,
20130052
(
2013
).
37.
X.
Xu
and
Y.
Luo
, “
Multistable tensegrity structures
,”
J. Struct. Eng.
137
(
1
),
117
123
(
2011
).
38.
S. D.
Guest
, “
Understanding tensegrity with an energy function
,” in
Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems
, edited by
A.
Zingoni
(
CRC Press
,
2022
).
39.
S. D.
Guest
, “
The stiffness of prestressed frameworks: A unifying approach
,”
Int. J. Solids Struct.
43
,
842
854
(
2006
).
40.
S. D.
Guest
, “
The stiffness of tensegrity structures
,”
IMA J. Appl. Math.
76
,
57
66
(
2011
).
41.
C. R.
Calladine
, “
Buckminster Fuller's ‘tensegrity’ structures and Clerk Maxwell's rules for the construction of stiff frames
,”
Int. J. Solids Struct.
14
,
161
172
(
1978
).
42.
C. R.
Calladine
and
S.
Pellegrino
, “
First-order infinitesimal mechanisms
,”
Int. J. Solids Struct.
27
,
505
515
(
1991
).
43.
R.
Connelly
and
W.
Whiteley
, “
Second-order rigidity and prestress stability for tensegrity frameworks
,”
SIAM J. Discrete Math.
9
,
453
491
(
1996
).
44.
R.
Connelly
, “
Tensegrity structures: Why are they stable?
,” in
Rigidity Theory and Applications
(
Springer
,
2002
), pp.
47
54
.
45.
M.
Schenk
and
S. D.
Guest
, “
On zero stiffness
,”
Proc. Inst. Mech. Eng., Part C
228
,
1701
1714
(
2014
).
46.
A.
Münchinger
,
V.
Hahn
,
D.
Beutel
,
S.
Woska
,
J.
Monti
,
C.
Rockstuhl
,
E.
Blasco
, and
M.
Wegener
, “
Multi-photon 4D printing of complex liquid crystalline microstructures by in situ alignment using electric fields
,”
Adv. Mater. Technol.
7
,
2100944
(
2022
).
47.
A.
Münchinger
,
L.-Y.
Hsu
,
F.
Fürniß
,
E.
Blasco
, and
M.
Wegener
, “
3D optomechanical metamaterials
,”
Mater. Today
59
,
9
17
(
2022
).

Supplementary Material

You do not currently have access to this content.