We present an electric power meter that capitalizes on the interaction of electrothermal strain and mechanical vibration in a micro-electro-mechanical systems (MEMS) beam undergoing the antisymmetric mode of vibration. This is achieved by using a resonant bridge driven with an electrothermal modulation technique. The change in electrical power is monitored through the alteration in the mechanical stiffness of the structure, which is tracked electrostatically. The observed deflection profile of the beam under the influence of electrothermal effects shows that the deflection geometry due to buckling exhibits similar trends as the first symmetric vibrational mode, in contrast to the antisymmetric mode. Therefore, we compare two distinct vibrational modes, converting the compressive thermal stress generated by the input electrical power via Joule heating into a shift in the resonance frequency. By employing antisymmetric vibrational mode, the output of our device is consistently monotonic to the input electrical power, even when the microbeam is experiencing buckling deflections. In addition, the sensing operation based on antisymmetric modes yields only a 1.5% nonlinear error in the response curve, which is ten times lower than that of symmetric modes. The observed deformation shape of the resonator agrees with the results obtained from multi-physics finite simulations. Finally, this approach has the potential to be extended to other frequency-shift-based sensors, allowing for higher linearity.

1.
W.
De Bo
,
L. X.
Ping
, and
L.
Tong
,
IEEE Electron Device Lett.
33
(
2
),
269
271
(
2012
).
2.
D.-B.
Wang
,
X.-P.
Liao
, and
T.
Liu
,
J. Microelectromech. Syst.
21
(
1
),
121
131
(
2012
).
3.
D.
Champier
,
Energy Convers. Manage.
140
,
167
181
(
2017
).
4.
X.
Hu
,
L.
Xu
,
X.
Lin
, and
M.
Pecht
,
Joule
4
(
2
),
310
346
(
2020
).
5.
H.
Fu
and
E. M.
Yeatman
,
Mech. Syst. Signal Process.
125
,
229
244
(
2019
).
6.
H.
Li
,
Z.
Zhang
,
L.
Zu
,
Y.
Hao
, and
H.
Chang
,
Microsyst. Nanoeng.
8
(
1
),
42
(
2022
).
7.
N.
Jaber
,
S.
Ilyas
,
O.
Shekhah
,
M.
Eddaoudi
, and
M. I.
Younis
,
IEEE Sens. J.
18
(
24
),
10145
10153
(
2018
).
8.
M.
Pallay
,
R. N.
Miles
, and
S.
Towfighian
,
IEEE Trans. Ind. Electron.
67
(
11
),
9833
9840
(
2020
).
9.
J.
Jalil
,
Y.
Ruan
, and
Y.
Zhu
,
IEEE Electron Device Lett.
39
(
12
),
1928
1931
(
2018
).
10.
H.
Yan
,
X.
Liao
,
C.
Chen
, and
C.
Li
,
IEEE Sens. J.
18
(
13
),
5272
5277
(
2018
).
11.
L. J.
Fernandez
,
R. J.
Wiegerink
,
J.
Flokstra
,
J.
Sese
,
H.
Jansen
, and
M.
Elwenspoek
,
J. Micromech. Microeng.
16
(
7
),
1099
(
2006
).
12.
J. H.
Li
and
X.
Liao
,
IEEE Electron Device Lett.
42
(
12
),
1849
1852
(
2021
).
13.
Z.
Zhang
,
X.
Liao
, and
L.
Han
,
Sens. Actuators, A
160
(
1–2
),
42
47
(
2010
).
14.
C.
Chu
,
X.
Liao
, and
C.
Chen
,
J. Microelectromech. Syst.
26
(
6
),
1183
1185
(
2017
).
15.
J.
Han
and
R.
Chen
,
IEEE Electron Device Lett.
40
(
5
),
792
795
(
2019
).
16.
N.
Sahraei
,
S.
Watson
,
S.
Sofia
,
A.
Pennes
,
T.
Buonassisi
, and
I. M.
Peters
,
Energy Procedia
143
,
739
741
(
2017
).
17.
P.
Sikka
,
P.
Corke
,
L.
Overs
,
P.
Valencia
, and
T.
Wark
, in paper presented at the
3rd International Conference on Intelligent Sensors, Sensor Networks and Information
,
2007
.
18.
Y.
Zhang
,
Y.
Watanabe
,
S.
Hosono
,
N.
Nagai
, and
K.
Hirakawa
,
Appl. Phys. Lett.
108
(
16
),
163503
(
2016
).
19.
Y.
Zhang
,
S.
Hosono
,
N.
Nagai
, and
K.
Hirakawa
,
Appl. Phys. Lett.
111
(
2
),
023504
(
2017
).
20.
A.
Cowen
,
G.
Hames
,
D.
Monk
,
S.
Wilcenski
, and
B.
Hardy
, SOIMUMPs Design Handbook (Memscap Inc.,
2011
)
21.
E. J.
Ng
,
V. A.
Hong
,
Y.
Yang
,
C. H.
Ahn
,
C. L.
Everhart
, and
T. W.
Kenny
,
J. Microelectromech. Syst.
24
(
3
),
730
741
(
2015
).
22.
J.-Y.
Lee
and
A. A.
Seshia
,
Sens. Actuators, A
156
(
1
),
36
42
(
2009
).
23.
X.
Zou
,
U.
Yaqoob
,
H.
Hussein
,
K. N.
Salama
, and
H.
Fariborzi
,
J. Microelectromech. Syst.
32
(
1
),
117
125
(
2023
).
24.
F.
Ebrahimi
and
A.
Dabbagh
,
Mechanics of Multiscale Hybrid Nanocomposites
(
Elsevier
,
2022
).
25.
S.
Pamidighantam
,
R.
Puers
,
K.
Baert
, and
H. A.
Tilmans
,
J. Micromech. Microeng.
12
(
4
),
458
(
2002
).
26.
A.
Pagani
and
E.
Carrera
,
Compos. Struct.
170
,
40
52
(
2017
).
27.
X. L.
Jia
,
J.
Yang
,
S.
Kitipornchai
, and
C. W.
Lim
,
J. Sound Vib.
331
(
14
),
3397
3411
(
2012
).
28.
W.
Liu
,
F.
Formosa
,
A.
Badel
,
A.
Agbossou
, and
G.
Hu
,
Smart Mater. Struct.
25
(
11
),
115045
(
2016
).
29.
H.
Cho
,
D.
Jang
,
J.
Yoon
,
Y.-S.
Ryu
,
B.
Lee
,
B.
Lee
,
S.
Chung
, and
Y.
Hong
,
ACS Energy Lett.
8
,
2585
2594
(
2023
).
30.
H. C.
Cheng
,
P. H.
Chen
,
Y. T.
Su
, and
P. H.
Chen
,
IEEE Solid-State Circuits Lett.
3
,
350
353
(
2020
).
31.
S.
Roy
,
A. N. M. W.
Azad
,
S.
Baidya
,
M. K.
Alam
, and
F.
Khan
,
IEEE Trans. Power Electron.
37
(
10
),
12237
12263
(
2022
).
32.
E.
Peytavit
,
S.
Lepilliet
,
F.
Hindle
,
C.
Coinon
,
T.
Akalin
,
G.
Ducournau
,
G.
Mouret
, and
J.-F.
Lampin
,
Appl. Phys. Lett.
99
(
22
),
223508
(
2011
).
33.
W.
Ye
,
L.
Zhihong
,
D. T.
McCormick
, and
N. C.
Tien
,
J. Microelectromech. Syst.
13
(
6
),
902
911
(
2004
).
34.
A.
Goriely
,
R.
Vandiver
, and
M.
Destrade
,
Proc. R. Soc. A
464
(
2099
),
3003
3019
(
2008
).

Supplementary Material

You do not currently have access to this content.