Silicon encapsulated in conductive layers has proven to be an excellent method for retaining the high capacity of silicon in lithium-ion batteries (LIBs) throughout cycling. This study presents an ultra-fast, single-step, and scalable method for synthesizing graphene@Fe–Si nanoparticles via an atmospheric pressure surface-wave-sustained plasma. The verification of the synthesized nanoparticles, encompassing graphene cladding and silicon nanoparticles encapsulated in iron, was conducted through energy-dispersive x-ray spectroscopy mapping, line scanning in the transmission electron microscopy mode, and high-resolution transmission electron microscopy. Additionally, Raman spectroscopy corroborated the identity of the cladding as graphene. This study provides a viable strategy for the industrial production of anode materials for high-performance LIBs.

1.
B.
Dunn
,
H.
Kamath
, and
J. M.
Tarascon
, “
Electrical energy storage for the grid: A battery of choices
,”
Science
334
(
6058
),
928
935
(
2011
).
2.
F.
Zhang
and
J.
Yang
, “
Boosting initial coulombic efficiency of Si-based anodes: A review
,”
Emergent Mater.
3
(
3
),
369
380
(
2020
).
3.
M.
Chen
,
X.
Ma
,
B.
Chen
et al, “
Recycling end-of-life electric vehicle lithium-ion batteries
,”
Joule
3
(
11
),
2622
2646
(
2019
).
4.
X.-G.
Yang
,
T.
Liu
, and
C.-Y.
Wang
, “
Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles
,”
Nat. Energy
6
(
2
),
176
185
(
2021
).
5.
T. Y.
Wang
,
X. F.
Li
,
Z.
Jie
et al, “
Polymer dielectrics with outstanding dielectric characteristics via passivation with oxygen atoms through C-F vacancy carbonylation
,”
Nano Lett.
(Published online) (
2023
).
6.
L.
Sun
,
Y.
Liu
,
J.
Wu
et al, “
A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries
,”
Small
18
(
5
),
2102894
(
2022
).
7.
G.
Hou
,
B.
Cheng
,
Y.
Cao
et al, “
Scalable synthesis of highly dispersed silicon nanospheres by RF thermal plasma and their use as anode materials for high-performance Li-ion batteries
,”
J. Mater. Chem. A
3
(
35
),
18136
18145
(
2015
).
8.
J.
Shi
,
L.
Zu
,
H.
Gao
et al, “
Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management
,”
Adv. Funct. Mater.
30
(
35
),
2002980
(
2020
).
9.
S. J.
Yeom
,
C.
Lee
,
S.
Kang
et al, “
Native void space for maximum volumetric capacity in silicon-based anodes
,”
Nano Lett.
19
(
12
),
8793
8800
(
2019
).
10.
H.
Wang
,
J.
Fu
,
C.
Wang
et al, “
A binder-free high silicon content flexible anode for Li-ion batteries
,”
Energy Environ. Sci.
13
(
3
),
848
858
(
2020
).
11.
P.
Kumar
,
C. L.
Berhaut
,
D.
Zapata Dominguez
et al, “
Nano-architectured composite anode enabling long-term cycling stability for high-capacity lithium-ion batteries
,”
Small
16
(
11
),
1906812
(
2020
).
12.
L.
Lin
,
X.
Xu
,
C.
Chu
et al, “
Mesoporous amorphous silicon: A simple synthesis of a high-rate and long-life anode material for lithium-ion batteries
,”
Angew. Chem., Int. Ed. Engl.
55
(
45
),
14063
14066
(
2016
).
13.
T.
Yoon
,
T.
Bok
,
C.
Kim
et al, “
Mesoporous silicon hollow nanocubes derived from metal-organic framework template for advanced lithium-ion battery anode
,”
ACS Nano
11
(
5
),
4808
4815
(
2017
).
14.
M.
Yang
,
J.
Liu
,
S.
Li
et al, “
Ultrafast synthesis of graphene nanosheets encapsulated Si nanoparticles via deflagration of energetic materials for lithium-ion batteries
,”
Nano Energy
65
,
104028
(
2019
).
15.
Y.
Yu
,
L.
Gu
,
C.
Zhu
et al, “
Reversible storage of lithium in silver-coated three-dimensional macroporous silicon
,”
Adv. Mater.
22
(
20
),
2247
2250
(
2010
).
16.
Q.
Cheng
,
Y.
Okamoto
,
N.
Tamura
et al, “
Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries
,”
Sci Rep
7
(
1
),
14782
(
2017
).
17.
G.
Wang
,
X.
Shen
,
J.
Yao
et al, “
Graphene nanosheets for enhanced lithium storage in lithium ion batteries
,”
Carbon
47
(
8
),
2049
2053
(
2009
).
18.
Z. S.
Wu
,
W.
Ren
,
L.
Xu
et al, “
Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries
,”
ACS Nano
5
(
7
),
5463
5471
(
2011
).
19.
Y.
Su
,
X.
Feng
,
R.
Zheng
et al, “
binary network of conductive elastic polymer constraining nanosilicon for a high-performance lithium-ion battery
,”
ACS Nano
15
(
9
),
14570
14579
(
2021
).
20.
M.
Yang
,
J.
Liu
,
S.
Li
et al, “
Self-sustained solid-state exothermic reaction for scalable graphene production
,”
Mater. Des.
196
,
109135
(
2020
).
21.
X.
Li
,
M.
Wu
,
T.
Feng
et al, “
Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries
,”
RSC Adv.
7
(
76
),
48286
48293
(
2017
).
22.
Y.
Li
,
K.
Yan
,
H.-W.
Lee
et al, “
Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
,”
Nat. Energy
1
,
15029
(
2016
).
23.
I. H.
Son
,
J.
Hwan Park
,
S.
Kwon
et al, “
Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
,”
Nat Commun.
6
,
7393
(
2015
).
24.
Z.
Lu
,
N.
Liu
,
H. W.
Lee
et al, “
Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes
,”
ACS Nano
9
(
3
),
2540
2547
(
2015
).
25.
N.
Liu
,
Z.
Lu
,
J.
Zhao
et al, “
A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
,”
Nat. Nanotechnol.
9
(
3
),
187
192
(
2014
).
26.
M.
Ko
,
S.
Chae
,
S.
Jeong
et al, “
Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries
,”
ACS Nano
8
(
8
),
8591
8599
(
2014
).
27.
B.
Wang
,
X.
Li
,
X.
Zhang
et al, “
Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes
,”
Adv Mater
25
(
26
),
3560
3565
(
2013
).
28.
X.
Zhou
,
Y.-X.
Yin
,
L.-J.
Wan
et al, “
Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries
,”
Adv. Energy Mater.
2
(
9
),
1086
1090
(
2012
).
29.
N.
Liu
,
H.
Wu
,
M. T.
Mcdowell
et al, “
A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
,”
Nano Lett.
12
(
6
),
3315
3321
(
2012
).
30.
Y.
Wen
,
Y.
Zhu
,
A.
Langrock
et al, “
Graphene-bonded and -encapsulated Si nanoparticles for lithium ion battery anodes
,”
Small
9
(
16
),
2810
2816
(
2013
).
31.
X. H.
Liu
,
L.
Zhong
,
S.
Huang
et al, “
Size-dependent fracture of silicon nanoparticles during lithiation
,”
ACS Nano
6
(
2
),
1522
1531
(
2012
).
32.
X.
Bai
,
Y.
Yu
,
H. H.
Kung
et al, “
Si@SiOx/graphene hydrogel composite anode for lithium-ion battery
,”
J. Power Sources
306
,
42
48
(
2016
).
33.
J.
Sourice
,
A.
Quinsac
,
Y.
Leconte
et al, “
One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries
,”
ACS Appl Mater Interfaces
7
(
12
),
6637
6644
(
2015
).
34.
H.
Li
,
H.
Li
,
Y.
Lai
et al, “
Revisiting the preparation progress of nano-structured Si anodes toward industrial application from the perspective of cost and scalability
,”
Adv. Energy Mater.
12
(
7
),
2102181
(
2022
).
35.
J.
Schwan
,
G.
Nava
, and
L.
Mangolini
, “
Critical barriers to the large scale commercialization of silicon-containing batteries
,”
Nanoscale Adv.
2
(
10
),
4368
4389
(
2020
).
36.
Z. Y.
Jie
,
C.
Liu
,
S. Y.
Huang
et al, “
Mechanisms of gas temperature variation of the atmospheric microwave plasma torch
,”
J. Appl. Phys.
129
(
23
),
233302
(
2021
).
37.
Z.
Jie
,
C.
Liu
,
D.
Xia
et al, “
Determination of 915-MHz atmospheric pressure air microwave plasma torch (MPT) parameters
,”
IEEE Trans. Plasma Sci.
51
(
2
),
456
465
(
2023
).
38.
B.
Zhang
,
Q.
Wang
,
G.
Zhang
et al, “
Preparation of iron nanoparticles from iron pentacarbonyl using an atmospheric microwave plasma
,”
Plasma Sci. Technol.
17
(
10
),
876
880
(
2015
).
39.
S.
Huang
,
C.
Liu
,
Z.
Jie
et al, “
Imaging diagnostics and gas temperature measurements of atmospheric-microwave-induced air plasma torch
,”
IEEE Trans. Plasma Sci.
48
(
6
),
2153
2162
(
2020
).
40.
A.
Bhattacharjee
,
A.
Rooj
,
D.
Roy
et al, “
Thermal decomposition study of ferrocene [(C5H5)2Fe]
,”
J. Exp. Phys.
2014
,
1
8
.
41.
S.
Grimm
,
P.
Hemberger
,
T.
Kasper
et al, “
Mechanism and kinetics of the thermal decomposition of Fe(C5H5)2 in inert and reductive atmosphere: A synchrotron-assisted investigation in a microreactor
,”
Adv. Mater. Interfaces
9
(
22
),
2200192
(
2022
).
42.
A.
Revesz
,
L.
Szepes
,
T.
Baer
et al, “
Binding energies and isomerization in metallocene ions from threshold photoelectron photoion coincidence spectroscopy
,”
J Am Chem Soc
132
(
50
),
17795
17803
(
2010
).
43.
W.
Zhang
,
P.
Wu
,
Z.
Li
et al, “
First-principles thermodynamics of graphene growth on Cu surfaces
,”
J. Phys. Chem. C
115
(
36
),
17782
17787
(
2011
).
44.
E.
Yoo
,
J.
Kim
,
E.
Hosono
et al, “
Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries
,”
Nano Lett.
8
(
8
),
2277
2282
(
2008
).
45.
J.
Hu
,
H.
Li
, and
X.
Huang
, “
Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries
,”
Solid State Ionics
178
(
3–4
),
265
271
(
2007
).
46.
X.
Li
,
Y.
Hu
,
J.
Liu
et al, “
Structurally tailored graphene nanosheets as lithium ion battery anodes: An insight to yield exceptionally high lithium storage performance
,”
Nanoscale
5
(
24
),
12607
12615
(
2013
).
47.
K. H.
Park
,
D.
Lee
,
J.
Kim
et al, “
Defect-free, size-tunable graphene for high-performance lithium ion battery
,”
Nano Lett.
14
(
8
),
4306
4313
(
2014
).
You do not currently have access to this content.