In this Letter, an indirectly excited approach of introducing an air-filled separation chamber is proposed to develop a drum-like piezoelectric rotational energy harvester (DL-PREH) via magnetic beating. The harvester delivers the external excitation to the piezoelectric transducer via the intermediate air chamber, and the electric output of transducer is induced by the air pressure inside the chamber. Thus, a high reliability can be guaranteed for the harvester under an unexpected excessive impact due to the air-filled separation zone. Moreover, the harvester can easily implement a resonant frequency tuning by altering the drum height to improve the rotation speed adaptability. Its potential applications as a sustainable power source to charge different capacitors and power commercial light-emitting diodes (LEDs) are demonstrated experimentally. The fabricated DL-PREH device can achieve a maximum output power of 10.63 mW with a drum height of 6 mm at the matching resistance of 24 kΩ. Also, it can light up at least 100 blue commercial LEDs in parallel. The designed harvester exhibits its good power generation capability and resonance frequency tunability.

1.
J.-X.
Wang
,
W.-B.
Su
,
J.-C.
Li
, and
C.-M.
Wang
, “
A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment
,”
Renewable Energy
184
,
619
626
(
2022
).
2.
S.
Fang
,
X.
Fu
,
X.
Du
, and
W.-H.
Liao
, “
A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers
,”
Appl. Phys. Lett.
114
,
233902
(
2019
).
3.
L.
He
,
Z.
Wang
,
G.
Yu
,
Z.
Shen
,
S.
Jiang
, and
G.
Cheng
, “
Design and experimental research of magnetically excited rotating piezoelectric energy harvester
,”
Microsyst. Technol.
28
,
1593
1600
(
2022
).
4.
S.
Fang
,
J.
Xing
,
K.
Chen
,
X.
Fu
,
S.
Zhou
, and
W.-H.
Liao
, “
Hybridizing piezoelectric and electromagnetic mechanisms with dynamic bistability for enhancing low-frequency rotational energy harvesting
,”
Appl. Phys. Lett.
119
,
243903
(
2021
).
5.
G.
Shi
,
D.
Tong
,
Y.
Xia
,
S.
Jia
,
J.
Chang
,
Q.
Li
,
X.
Wang
,
H.
Xia
, and
Y.
Ye
, “
A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls
,”
Appl. Energy
310
,
118511
(
2022
).
6.
J.
Chung
,
M.
Song
,
S.-H.
Chung
,
W.
Choi
,
S.
Lee
,
Z.-H.
Lin
,
J.
Hong
, and
S.
Lee
, “
Triangulated cylinder origami-based piezoelectric/triboelectric hybrid generator to harvest coupled axial and rotational motion
,”
Research
2021
,
7248579
.
7.
J.
Kan
,
J.
Wang
,
F.
Meng
,
C.
He
,
S.
Li
,
S.
Wang
, and
Z.
Zhang
, “
A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle
,”
Energy
262
,
125429
(
2023
).
8.
G.
Shan
and
M.
Zhu
, “
A piezo stack energy harvester with frequency up-conversion for rail track vibration
,”
Mech. Syst. Signal Process.
178
,
109268
(
2022
).
9.
K.
Fan
,
Z.
Liu
,
H.
Liu
,
L.
Wang
,
Y.
Zhu
, and
B.
Yu
, “
Scavenging energy from human walking through a shoe-mounted piezoelectric harvester
,”
Appl. Phys. Lett.
110
,
143902
(
2017
).
10.
X.
Rui
,
Z.
Zeng
,
Y.
Zhang
,
Y.
Li
,
H.
Feng
, and
Z.
Yang
, “
A design method for low-frequency rotational piezoelectric energy harvesting in micro applications
,”
Microsyst. Technol.
26
,
981
991
(
2020
).
11.
P.
Janphuang
,
R. A.
Lockhart
,
D.
Isarakorn
,
S.
Henein
,
D.
Briand
, and
N. F.
de Rooij
, “
Harvesting energy from a rotating gear using an AFM-Like MEMS piezoelectric frequency up-converting energy harvester
,”
J. Microelectromech. Syst.
24
,
742
754
(
2015
).
12.
H.
Fu
and
E. M.
Yeatman
, “
A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion
,”
Energy
125
,
152
161
(
2017
).
13.
Y.
Yang
,
Q.
Shen
,
J.
Jin
,
Y.
Wang
,
W.
Qian
, and
D.
Yuan
, “
Rotational piezoelectric wind energy harvesting using impact-induced resonance
,”
Appl. Phys. Lett.
105
,
053901
(
2014
).
14.
S.
Fang
,
S.
Wang
,
G.
Miao
,
S.
Zhou
,
Z.
Yang
,
X.
Mei
, and
W.-H.
Liao
, “
Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect
,”
Nonlinear Dyn.
101
,
123
152
(
2020
).
15.
S. P.
Machado
,
M.
Febbo
,
J. M.
Ramirez
, and
C. D.
Gatti
, “
Rotational double-beam piezoelectric energy harvester impacting against a stop
,”
J. Sound Vib.
469
,
115141
(
2020
).
16.
J.
Kan
,
J.
Fu
,
S.
Wang
,
Z.
Zhang
,
S.
Chen
, and
C.
Yang
, “
Study on a piezo-disk energy harvester excited by rotary magnets
,”
Energy
122
,
62
69
(
2017
).
17.
L.
Liu
,
L.
He
,
X.
Liu
,
Y.
Han
,
B.
Sun
, and
G.
Cheng
, “
Design and experiment of a low frequency non-contact rotary piezoelectric energy harvester excited by magnetic coupling
,”
Energy
258
,
124882
(
2022
).
18.
S.
Timoshenko
and
S.
Woinowsky-krieger
,
Theory of Plates and Shells
(
McGraw-Hill Book Company
,
New York
,
1959
).
19.
Z.
Zhang
,
Y.
Gu
,
S.
Wang
,
J.
Wang
,
S.
Li
,
F.
Meng
, and
J.
Kan
, “
Dynamic modeling and experimental validation of a low frequency piezoelectric vibration energy harvester via secondary excitation of pressured fluid
,”
Mech. Syst. Signal Process.
191
,
110170
(
2023
).
20.
J.
Kan
,
D.
Liu
,
S.
Wang
,
B.
Wang
,
L.
Yu
, and
S.
Li
, “
A piezohydraulic vibration isolator used for energy harvesting
,”
J. Intell. Mater. Syst. Struct.
25
,
1727
1737
(
2014
).
21.
J.
Kan
,
Y.
Wu
,
S.
Li
,
S.
Wang
, and
Z.
Zhang
, “
A tunable rotational energy harvester exploiting a flexible-clamping piezoelectric beam by deploying magnetic repulsive force
,”
Sens. Actuators, A
353
,
114198
(
2023
).
You do not currently have access to this content.