Hydrogen-terminated diamond surfaces, emerging as a promising two-dimensional (2D) electron platform with great thermal and electronic properties, hold great potential for the next-generation high power and high frequency field effect transistor (FET). However, ideal gate dielectrics with high crystallinity and defect-free surfaces are still largely elusive. In this work, using the contamination-free pickup transfer method, hexagonal boron nitride (h-BN) flakes were fabricated on top of the hydrogen-terminated diamond surface to serve as a gate material and the passivation layer. The morphological and optical characterizations revealed the formation of homogeneous and intimate interface between h-BN and diamond. Benefiting from the h-BN gate dielectric layer, the maximum drain current density, subthreshold swing, and on/off ratio of diamond FET are measured to be −210.3 mA mm−1, 161 mV/dec, and 106, respectively. Especially, the transport measurement shows an almost constant Hall mobility of around 260 cm2 V−1 s−1 in the hole density range of 2 − 6 × 1012 cm−2, suggesting the excellent gate controllability of h-BN. Our results indicate that h-BN could form high-quality interface with hydrogen-terminated diamond, paving the way for the development of diamond-based electronic applications.

1.
J.
Isberg
,
J.
Hammersberg
,
E.
Johansson
,
T.
Wikstrom
,
D. J.
Twitchen
,
A. J.
Whitehead
,
S. E.
Coe
, and
G. A.
Scarsbrook
, “
High carrier mobility in single-crystal plasma-deposited diamond
,”
Science
297
,
1670
1672
(
2002
).
2.
N.
Donato
,
N.
Rouger
,
J.
Pernot
,
G.
Longobardi
, and
F.
Udrea
, “
Diamond power devices: State of the art, modelling, figures of merit and future perspective
,”
J. Phys. D
53
,
093001
(
2020
).
3.
C. J. H.
Wort
and
R. S.
Balmer
, “
Diamond as an electronic material
,”
Mater. Today
11
,
22
28
(
2008
).
4.
X.
Yu
,
J.
Zhou
,
C.
Qi
,
Z.
Cao
,
Y.
Kong
, and
T.
Chen
, “
A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz
,”
IEEE Electron Device Lett.
39
,
1373
1376
(
2018
).
5.
G.
Chicot
,
A.
Maréchal
,
R.
Motte
,
P.
Muret
,
E.
Gheeraert
, and
J.
Pernot
, “
Metal oxide semiconductor structure using oxygen-terminated diamond
,”
Appl. Phys. Lett.
102
,
242108
(
2013
).
6.
H.
Kawarada
, “
Hydrogen-terminated diamond surfaces and interfaces
,”
Surf. Sci. Rep.
26
,
205
259
(
1996
).
7.
D.
Takeuchi
,
H.
Kato
,
G. S.
Ri
,
T.
Yamada
,
P. R.
Vinod
,
D.
Hwang
,
C. E.
Nebel
,
H.
Okushi
, and
S.
Yamasaki
, “
Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces
,”
Appl. Phys. Lett.
86
,
152103
(
2005
).
8.
K. G.
Crawford
,
I.
Maini
,
D. A.
Macdonald
, and
D. A. J.
Moran
, “
Surface transfer doping of diamond: A review
,”
Prog. Surf. Sci.
96
,
100613
(
2021
).
9.
S. J.
Bader
,
H.
Lee
,
R.
Chaudhuri
,
S.
Huang
,
A.
Hickman
,
A.
Molnar
,
H. G.
Xing
,
D.
Jena
,
H. W.
Then
,
N.
Chowdhury
, and
T.
Palacios
, “
Prospects for wide bandgap and ultrawide bandgap CMOS devices
,”
IEEE Trans. Electron Devices
67
,
4010
4020
(
2020
).
10.
M.
Higashiwaki
,
R.
Kaplar
,
J.
Pernot
, and
H.
Zhao
, “
Ultrawide bandgap semiconductors
,”
Appl. Phys. Lett.
118
,
200401
(
2021
).
11.
A.
Laikhtman
,
A.
Lafosse
,
Y. Le.
Coat
,
R.
Azria
, and
A.
Hoffman
, “
Interaction of water vapor with bare and hydrogenated diamond film surfaces
,”
Surf. Sci.
551
,
99
105
(
2004
).
12.
K.
Hirama
,
H.
Sato
,
Y.
Harada
,
H.
Yamamoto
, and
M.
Kasu
, “
Diamond field-effect transistors with 1.3 A/mm drain current density by Al2O3 passivation layer
,”
Jpn. J. Appl. Phys.
51
,
090112
(
2012
).
13.
J. W.
Liu
,
M. Y.
Liao
,
M.
Imura
, and
Y.
Koide
, “
Normally-off HfO2-gated diamond field effect transistors
,”
Appl. Phys. Lett.
103
,
092905
(
2013
).
14.
J.
Liu
,
M.
Liao
,
M.
Imura
,
A.
Tanaka
,
H.
Iwai
, and
Y.
Koide
, “
Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric
,”
Sci. Rep.
4
,
6395
(
2014
).
15.
J.
Su
,
G.
Chen
,
W.
Wang
,
H.
Shi
,
S.
He
,
X.
Lv
,
Y.
Wang
,
M.
Zhang
,
R.
Wang
, and
H. X.
Wang
, “
Electrical characteristics of normally off hydrogen-terminated diamond field effect transistors with lanthanum oxide gate dielectric
,”
Appl. Phys. Lett.
121
,
162103
(
2022
).
16.
S.
He
,
W.
Wang
,
G.
Chen
,
S.
Zhang
,
Q.
Li
,
Q.
Zhang
,
X.
Chang
,
Y. F.
Wang
,
M.
Zhang
, and
H. X.
Wang
, “
Small subthreshold swing diamond field effect transistors with SnO2 gate dielectric
,”
IEEE Trans. Electron Devices
69
,
4427
4431
(
2022
).
17.
Q.
He
,
K.
Su
,
J.
Zhang
,
Z.
Ren
,
Y.
Xing
,
J.
Zhang
,
Y.
Lei
, and
Y.
Hao
, “
High mobility normally-OFF hydrogenated diamond field effect transistors with BaF2 gate insulator formed by electron beam evaporator
,”
IEEE Trans. Electron Devices
69
,
1206
1210
(
2022
).
18.
Z.
Ren
,
J.
Zhang
,
J.
Zhang
,
C.
Zhang
,
S.
Xu
,
Y.
Li
, and
Y.
Hao
, “
Diamond field effect transistors with MoO3 gate dielectric
,”
IEEE Electron Device Lett.
38
,
786
789
(
2017
).
19.
C.
Verona
,
W.
Ciccognani
,
S.
Colangeli
,
E.
Limiti
,
M.
Marinelli
, and
G.
Verona-Rinati
, “
Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators
,”
J. Appl. Phys.
120
,
025104
(
2016
).
20.
Y.
Sasama
,
K.
Komatsu
,
S.
Moriyama
,
M.
Imura
,
T.
Teraji
,
K.
Watanabe
,
T.
Taniguchi
,
T.
Uchihashi
, and
Y.
Takahide
, “
High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric
,”
APL Mater.
6
,
111105
(
2018
).
21.
K.
Hirama
,
S.
Miyamoto
,
H.
Matsudaira
,
K.
Yamada
,
H.
Kawarada
,
T.
Chikyo
,
H.
Koinuma
,
K.
Hasegawa
, and
H.
Umezawa
, “
Characterization of diamond metal-insulator-semiconductor FETs with Al2O3 gate insulator
,”
Appl. Phys. Lett.
88
,
112117
(
2006
).
22.
J.
Pernot
,
P. N.
Volpe
,
F.
Omnès
,
P.
Muret
,
V.
Mortet
,
K.
Haenen
, and
T.
Teraji
, “
Hall hole mobility in boron-doped homoepitaxial diamond
,”
Phys. Rev. B
81
,
205203
(
2010
).
23.
G.
Daligou
and
J.
Pernot
, “
2D hole gas mobility at diamond/insulator interface
,”
Appl. Phys. Lett.
116
,
162105
(
2020
).
24.
F.
Wang
,
G. Q.
Chen
,
W.
Wang
,
M. H.
Zhang
,
S.
He
,
G.
Shao
,
Y. F.
Wang
,
W.
Hu
, and
H.
Wang
, “
High-threshold-voltage and low-leakage-current of normally-off H-diamond FET with self-aligned Zr/ZrO2 gate
,”
Diamond Relat. Mater.
134
,
109774
(
2023
).
25.
D.
Rhodes
,
S. H.
Chae
,
R.
Ribeiro-Palau
, and
J.
Hone
, “
Disorder in van der Waals heterostructures of 2D materials
,”
Nat. Mater.
18
,
541
549
(
2019
).
26.
Y.
Kubota
,
K.
Watanabe
,
O.
Tsuda
, and
T.
Taniguchi
, “
Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure
,”
Science
317
,
932
934
(
2007
).
27.
S.
Moon
,
J.
Kim
,
J.
Park
,
S.
Im
,
J.
Kim
,
I.
Hwang
, and
J. K.
Kim
, “
Hexagonal boron nitride for next-generation photonics and electronics
,”
Adv. Mater.
35
,
2204161
(
2023
).
28.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
,
614
617
(
2013
).
29.
Y.
Sasama
,
K.
Komatsu
,
S.
Moriyama
,
M.
Imura
,
S.
Sugiura
,
T.
Terashima
,
S.
Uji
,
K.
Watanabe
,
T.
Taniguchi
,
T.
Uchihashi
, and
Y.
Takahide
, “
Quantum oscillations in diamond field-effect transistors with a h-BN gate dielectric
,”
Phys. Rev. Mater.
3
,
121601(R)
(
2019
).
30.
Q.
Gui
,
Z.
Wang
,
C.
Cheng
,
X.
Zha
,
J.
Robertson
,
S.
Liu
,
Z.
Zhang
, and
Y.
Guo
, “
Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate
,”
Appl. Phys. Lett.
121
,
211601
(
2022
).
31.
Y.
Sasama
,
T.
Kageura
,
M.
Imura
,
K.
Watanabe
,
T.
Taniguchi
,
T.
Uchihashi
, and
Y.
Takahide
, “
High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures
,”
Nat. Electron.
5
,
37
44
(
2021
).
32.
S.
Fan
,
Q. A.
Vu
,
M. D.
Tran
,
S.
Adhikari
, and
Y. H.
Lee
, “
Transfer assembly for two-dimensional van der Waals heterostructures
,”
2D Mater.
7
,
022005
(
2020
).
33.
F.
Pizzocchero
,
L.
Gammelgaard
,
B. S.
Jessen
,
J. M.
Caridad
,
L.
Wang
,
J.
Hone
,
P.
Boggild
, and
T. J.
Booth
, “
The hot pick-up technique for batch assembly of van der Waals heterostructures
,”
Nat. Commun.
7
,
11894
(
2016
).
34.
M.
Onodera
,
S.
Masubuchi
,
R.
Moriya
, and
T.
Machida
, “
Assembly of van der Waals heterostructures: Exfoliation, searching, and stacking of 2D materials
,”
Jpn. J. Appl. Phys.
59
,
010101
(
2020
).
35.
Y. F.
Wang
,
W.
Wang
,
H. N.
Abbasi
,
X.
Chang
,
X.
Zhang
,
T.
Zhu
,
Z.
Liu
,
W.
Song
,
G.
Chen
, and
H. X.
Wang
, “
LiF/Al2O3 as dielectrics for MOSFET on single crystal hydrogen-terminated diamond
,”
IEEE Electron Device Lett.
41
,
808
811
(
2020
).
36.
M.
Buscema
,
G. A.
Steele
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
, “
The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2
,”
Nano Res.
7
,
561
571
(
2014
).
37.
Y.
Wan
,
H.
Zhang
,
W.
Wang
,
B.
Sheng
,
K.
Zhang
,
Y.
Wang
,
Q.
Song
,
N.
Mao
,
Y.
Li
,
X.
Wang
,
J.
Zhang
, and
L.
Dai
, “
Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate
,”
Small
12
,
198
203
(
2016
).
38.
T.
Knobloch
,
Y. Y.
Illarionov
,
F.
Ducry
,
C.
Schleich
,
S.
Wachter
,
K.
Watanabe
,
T.
Taniguchi
,
T.
Mueller
,
M.
Waltl
,
M.
Lanza
,
M. I.
Vexler
,
M.
Luisier
, and
T.
Grasser
, “
The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials
,”
Nat. Electron.
4
,
98
108
(
2021
).
39.
R.
Winter
,
J.
Ahn
,
P. C.
McIntyre
, and
M.
Eizenberg
, “
New method for determining flat-band voltage in high mobility semiconductors
,”
J. Vac. Sci. Technol. B
31
,
030604
(
2013
).
40.
Y.
Takahide
,
Y.
Sasama
,
M.
Tanaka
,
H.
Takeya
,
Y.
Takano
,
T.
Kageura
, and
H.
Kawarada
, “
Spin-induced anomalous magnetoresistance at the (100) surface of hydrogen-terminated diamond
,”
Phys. Rev. B
94
,
161301(R)
(
2016
).
41.
K.
Xing
,
A.
Tsai
,
D. L.
Creedon
,
S. A.
Yianni
,
J. C.
McCallum
,
L.
Ley
,
D. C.
Qi
, and
C. I.
Pakes
, “
Engineering the spin–orbit interaction in surface conducting diamond with a solid-state gate dielectric
,”
Appl. Phys. Lett.
116
,
174002
(
2020
).
You do not currently have access to this content.