A detailed study comparing defect incorporation between laser-assisted metal-organic chemical vapor deposition (MOCVD)-grown GaN and conventional low- and high-growth-rate MOCVD GaN was conducted. Using deep-level transient and optical spectroscopy, traps throughout the bandgap were characterized where traps were found at EC-0.25 eV, EC-0.57 eV, EC-0.72 eV, EC-0.9 eV, EC-1.35 eV, EC-2.6 eV, and EC-3.28 eV in all three samples. This indicates no new traps were observed in the laser-assisted MOCVD GaN sample. Overall, the trap concentrations in the laser-assisted MOCVD sample were ∼2× higher than the optimal low-growth-rate sample, but this is primarily due to the increase in gallium vacancy EC-2.6 eV and carbon-related EC-3.28 eV trap concentrations. The EC-0.9 eV trap concentration was ∼2× higher in the laser-assisted sample, so proton irradiation experiments were conducted to identify the physical source of this level. The results indicated this was a native point defect likely related to gallium interstitials. Overall, this study shows that the laser-assisted MOCVD growth method is promising for future thick, high-quality GaN epilayers after further growth optimizations.

You do not currently have access to this content.