In condensed systems, Weyl quasiparticles have a massless nature and exhibit various relativistic chiral phenomena such as Klein tunneling, chiral anomaly, and Fermi arc surface states. However, in photonic systems, Weyl points (WPs) are protected by the D2d symmetry, often leading to multiple chiral WPs at the same energy level, which makes generating chirality-related effects challenging. To overcome this hinderance, a perturbation that breaks mirror symmetry in the metallic saddle structure was introduced. This perturbation effectively separates the energies of distinct chiral WPs, enabling the experimental measurement of the spectral intensity for each Weyl band and the assessment of chirality imbalance among the WPs. By maintaining time-reversal symmetry, the present study offers an approach for investigating the imbalance in the chirality of pseudo-fermionic fields in photonic materials.

1.
H.
Weyl
, “
Gravitation and the electron
,”
Proc. Natl. Acad. Sci. U. S. A.
15
,
323
334
(
1929
).
2.
X. G.
Wan
,
A. M.
Turner
,
A.
Vishwanath
, and
S. Y.
Savrasov
, “
Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
,”
Phys. Rev. B
83
(
20
),
205101
(
2011
).
3.
N. P.
Armitage
,
E. J.
Mele
, and
A.
Vishwanath
, “
Weyl and Dirac semimetals in three-dimensional solids
,”
Rev. Mod. Phys.
90
(
1
),
015001
(
2018
).
4.
Z. K.
Liu
,
B.
Zhou
,
Y.
Zhang
,
Z. J.
Wang
,
H. M.
Weng
,
D.
Prabhakaran
,
S. K.
Mo
,
Z. X.
Shen
,
Z.
Fang
,
X.
Dai
,
Z.
Hussain
, and
Y. L.
Chen
, “
Discovery of a three-dimensional topological Dirac semimetal, Na3Bi
,”
Science
343
(
6173
),
864
867
(
2014
).
5.
S. Y.
Xu
,
C.
Liu
,
S. K.
Kushwaha
,
R.
Sankar
,
J. W.
Krizan
,
I.
Belopolski
,
M.
Neupane
,
G.
Bian
,
N.
Alidoust
,
T. R.
Chang
,
H. T.
Jeng
,
C. Y.
Huang
,
W. F.
Tsai
,
H.
Lin
,
P. P.
Shibayev
,
F. C.
Chou
,
R. J.
Cava
, and
M. Z.
Hasan
, “
Observation of Fermi arc surface states in a topological metal
,”
Science
347
(
6219
),
294
298
(
2015
).
6.
Q. H.
Yan
,
R. J.
Liu
,
Z. B.
Yan
,
B. Y.
Liu
,
H. S.
Chen
,
Z.
Wang
, and
L.
Lu
, “
Experimental discovery of nodal chains
,”
Nat. Phys.
14
(
5
),
461
464
(
2018
).
7.
R.
Yu
,
H. M.
Weng
,
Z.
Fang
,
X.
Dai
, and
X.
Hu
, “
Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN
,”
Phys. Rev. Lett.
115
(
3
),
036807
(
2015
).
8.
R.
Yu
,
Q. S.
Wu
,
Z.
Fang
, and
H. M.
Weng
, “
From nodal chain semimetal to Weyl semimetal in HfC
,”
Phys. Rev. Lett.
119
(
3
),
036401
(
2017
).
9.
B. A.
Yang
,
Q. H.
Guo
,
B.
Tremain
,
L. E.
Barr
,
W. L.
Gao
,
H. C.
Liu
,
B.
Beri
,
Y. J.
Xiang
,
D. Y.
Fan
,
A. P.
Hibbins
, and
S.
Zhang
, “
Direct observation of topological surface-state arcs in photonic metamaterials
,”
Nat. Commun.
8
,
97
(
2017
).
10.
B. Q.
Lv
,
H. M.
Weng
,
B. B.
Fu
,
X. P.
Wang
,
H.
Miao
,
J.
Ma
,
P.
Richard
,
X. C.
Huang
,
L. X.
Zhao
,
G. F.
Chen
,
Z.
Fang
,
X.
Dai
,
T.
Qian
, and
H.
Ding
, “
Experimental discovery of Weyl semimetal TaAs
,”
Phys. Rev. X.
5
(
3
),
031013
(
2015
).
11.
L. C.
Yang
,
G. R.
Li
,
X. M.
Gao
, and
L.
Lu
, “
Topological-cavity surface-emitting laser
,”
Nat. Photonics
16
(
4
),
279
(
2022
).
12.
X. L.
Liu
,
L. J.
Zhao
,
D.
Zhang
, and
S. H.
Gao
, “
Topological cavity laser with valley edge states
,”
Opt. Express
30
(
4
),
4965
4977
(
2022
).
13.
M.
Hafezi
,
E. A.
Demler
,
M. D.
Lukin
, and
J. M.
Taylor
, “
Robust optical delay lines with topological protection
,”
Nat. Phys.
7
(
11
),
907
912
(
2011
).
14.
C.
Zhang
,
Y.
Zhang
,
H. Z.
Lu
, et al “
Cycling Fermi arc electrons with Weyl orbits
,”
Nat. Rev. Phys.
3
,
660
670
(
2021
).
15.
S. Y.
Xu
,
I.
Belopolski
,
N.
Alidoust
,
M.
Neupane
,
G.
Bian
,
C. L.
Zhang
,
R.
Sankar
,
G. Q.
Chang
,
Z. J.
Yuan
,
C. C.
Lee
,
S. M.
Huang
,
H.
Zheng
,
J.
Ma
,
D. S.
Sanchez
,
B. K.
Wang
,
A.
Bansil
,
F. C.
Chou
,
P. P.
Shibayev
,
H.
Lin
,
S.
Jia
, and
M. Z.
Hasan
, “
Discovery of a Weyl fermion semimetal and topological Fermi arcs
,”
Science
349
(
6248
),
613
617
(
2015
).
16.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
, “
Controlling electromagnetic fields
,”
Science
312
(
5781
),
1780
1782
(
2006
).
17.
G. G.
Liu
,
P. H.
Zhou
,
Y. H.
Yang
,
H. R.
Xue
,
X.
Ren
,
X.
Lin
,
H. X.
Sun
,
L.
Bi
,
Y. D.
Chong
, and
B. L.
Zhang
, “
Observation of an unpaired photonic Dirac point
,”
Nat. Commun.
11
(
1
),
1873
(
2020
).
18.
L.
Lu
,
Z. Y.
Wang
,
D. X.
Ye
,
L. X.
Ran
,
L.
Fu
,
J. D.
Joannopoulos
, and
M.
Soljacic
, “
Experimental observation of Weyl points
,”
Science
349
(
6248
),
622
624
(
2015
).
19.
D. Y.
Wang
,
B.
Yang
,
W. L.
Gao
,
H. W.
Jia
,
Q. L.
Yang
,
X. Y.
Chen
,
M. G.
Wei
,
C. X.
Liu
,
M.
Navarro-Cia
,
J. G.
Han
,
W. L.
Zhang
, and
S.
Zhang
, “
Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductor
,”
Nat. Phys.
15
(
11
),
1150
(
2019
).
20.
S. Y.
Yu
,
X. C.
Sun
,
X.
Ni
,
Q.
Wang
,
X. J.
Yan
,
C.
He
,
X. P.
Liu
,
L.
Feng
,
M. H.
Lu
, and
Y. F.
Chen
, “
Surface phononic graphene
,”
Nat. Mater.
15
(
12
),
1243
1247
(
2016
).
21.
X. Q.
Huang
,
W. Y.
Deng
,
F.
Li
,
J. Y.
Lu
, and
Z. Y.
Liu
, “
Ideal type-II Weyl phase and topological transition in phononic crystals
,”
Phys. Rev. Lett.
124
(
20
),
206802
(
2020
).
22.
B.
Yang
,
Q. H.
Guo
,
B.
Tremain
,
R. J.
Liu
,
L. E.
Barr
,
Q. H.
Yan
,
W. L.
Gao
,
H. C.
Liu
,
Y. J.
Xiang
,
J.
Chen
,
C.
Fang
,
A.
Hibbins
,
L.
Lu
, and
S.
Zhang
, “
Ideal Weyl points and helicoid surface states in artificial photonic crystal structures
,”
Science
359
(
6379
),
1013
1016
(
2018
).
23.
H. W.
Jia
,
R. X.
Zhang
,
W. L.
Gao
,
Q. H.
Guo
,
B.
Yang
,
J.
Hu
,
Y. G.
Bi
,
Y. J.
Xiang
,
C. X.
Liu
, and
S.
Zhang
, “
Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials
,”
Science
363
(
6423
),
148
151
(
2019
).
24.
Q.
Li
,
D. E.
Kharzeev
,
C.
Zhang
,
Y.
Huang
,
I.
Pletikosic
,
A. V.
Fedorov
,
R. D.
Zhong
,
J. A.
Schneeloch
,
G. D.
Gu
, and
T.
Valla
, “
Chiral magnetic effect in ZrTe5
,”
Nat. Phys.
12
(
6
),
550
(
2016
).
25.
D. E.
Kharzeev
, “
The chiral magnetic effect and anomaly-induced transport
,”
Prog. Part. Nucl. Phys.
75
,
133
151
(
2014
).
26.
D. T.
Son
and
B. Z.
Spivak
, “
Chiral anomaly and classical negative magnetoresistance of Weyl metals
,”
Phys. Rev. B
88
(
10
),
104412
(
2013
).
27.
A. A.
Burkov
, “
Chiral anomaly and diffusive magnetotransport in Weyl metals
,”
Phys. Rev. Lett.
113
(
24
),
247203
(
2014
).
28.
X. X.
Zhou
,
C. D.
Hu
,
W. X.
Lu
,
Y.
Lai
, and
B.
Hou
, “
Numerical design of frequency-split Weyl points in Weyl metamaterial
,”
Acta Phys. Sin.
69
(
15
),
154204
(
2020
).
29.
Y.
Yang
,
W. L.
Gao
,
L. B.
Xia
,
H.
Cheng
,
H. W.
Jia
,
Y. J.
Xiang
, and
S.
Zhang
, “
Spontaneous emission and resonant scattering in transition from type I to type II photonic Weyl systems
,”
Phys. Rev. Lett.
123
(
3
),
033901
(
2019
).

Supplementary Material

You do not currently have access to this content.