Photomultiplication type quasi-planar all-polymer photodetectors (PM-QAPDs) are fabricated with P3HT/PY-IT as active layers by employing a sequential spin-coating method. The part of PY-IT can penetrate into a P3HT layer to emerge isolated electron-traps formed with PY-IT surrounded by P3HT. The trapped electron distribution near an Al electrode will determine the spectral response range of PM-QAPDs. Broadband PM-QAPDs can be achieved with a 0.25 μm thick P3HT layer and a ultra-thin PY-IT layer prepared from 1 mg/ml solution, exhibiting a broad response from 320 to 870 nm. An external quantum efficiency (EQE) value of optimal PM-QAPDs approaches 16 000% at 360 nm under −12 V bias. When the thickness of the P3HT layer is increased to 2.4 μm, the PM-QAPDs exhibit a narrowband response from 630 to 870 nm, which can be well explained according to the Beer–Lambert law. The work may provide a smart strategy to adjust response range of PM-QAPDs by alerting the thickness of the donor layer.

1.
H.
Ren
,
J.-D.
Chen
,
Y.-Q.
Li
, and
J.-X.
Tang
, “
Recent process in organic photodetectors and their applications
,”
Adv. Sci.
8
,
2002418
(
2020
).
2.
D.
Guo
,
L.
Yang
,
J.
Li
et al, “
Panchromatic photomultiplication-type organic photodetectors with planar/bulk heterojunction structure
,”
Sci. China Mater.
66
,
1172
1179
(
2023
).
3.
Z.
Zhao
,
J.
Wang
,
C.
Xu
et al, “
Photomultiplication type broad response organic photodetectors with one absorber layer and one multiplication layer
,”
J. Phys. Chem. Lett.
11
,
366
373
(
2020
).
4.
Q.
Li
,
Y.
Guo
, and
Y.
Liu
, “
Exploration of near-infrared organic photodetectors
,”
Chem. Mater.
31
,
6359
6379
(
2019
).
5.
X.
Liu
,
Y.
Lin
,
Y.
Liao
et al, “
Recent advances in organic near-infrared photodiodes
,”
J. Mater. Chem. C
6
,
3499
3513
(
2018
).
6.
D.
Yang
and
D.
Ma
, “
Development of organic semiconductor photodetectors: From mechanism to applications
,”
Adv. Opt. Mater.
7
,
1800522
(
2019
).
7.
K.
Yang
,
Z.
Zhao
,
M.
Liu
et al, “
Highly sensitive broadband photomultiplication type all-polymer photodetectors and their applications in optical pulse counting
,”
J. Mater. Chem. C
10
,
10888
10894
(
2022
).
8.
J.
Kang
,
J.
Kim
,
H.
Ham
et al, “
High-detectivity green-selective all-polymer p-n junction photodetectors
,”
Adv. Opt. Mater.
8
,
2001038
(
2020
).
9.
K.
Xia
,
Y.
Li
,
Y.
Wang
et al, “
Narrowband-absorption-type organic photodetectors for the far-red range based on fullerene-free bulk heterojunctions
,”
Adv. Opt. Mater.
8
,
1902056
(
2020
).
10.
L.
Li
,
F.
Zhang
,
J.
Wang
et al, “
Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication
,”
Sci. Rep.
5
,
9181
(
2015
).
11.
W.
Wang
,
M.
Du
,
M.
Zhang
et al, “
Organic photodetectors with gain and broadband/narrowband response under top/bottom illumination conditions
,”
Adv. Opt. Mater.
6
,
1800249
(
2018
).
12.
M. S.
Jang
,
S.
Yoon
,
K. M.
Sim
et al, “
Spatial confinement of the optical sensitizer to realize a thin film organic photodetector with high detectivity and thermal stability
,”
J. Phys. Chem. Lett.
9
,
8
12
(
2018
).
13.
Z.
Zhao
,
C.
Xu
,
Y.
Ma
et al, “
Filter-free narrowband photomultiplication-type planar heterojunction organic photodetectors
,”
Adv. Funct. Mater.
33
,
2212149
(
2023
).
14.
K.
Yang
,
G.
Wang
,
Z.
Zhao
et al, “
Highly sensitive dual-band switchable between ultraviolet and visible region photomultiplication type polymer photodetectors
,”
Adv. Phys. Res.
2
,
2200075
(
2022
).
15.
M.
Liu
,
Q.
Fan
,
K.
Yang
et al, “
Broadband photomultiplication-type polymer photodetetors and its application in light-controlled circuit
,”
Sci. China Chem.
65
,
1642
1649
(
2022
).
16.
W.
Xu
,
M.
Zhang
,
X.
Ma
et al, “
Over 17.4% efficiency of layer-by-layer all-polymer solar cells by improving exciton utilization in acceptor layer
,”
Adv. Funct. Mater.
33
,
2215204
(
2023
).
17.
H.
Zhou
,
L.
Zhang
,
X.
Ma
et al, “
Approaching 18% efficiency of ternary layer-by-layer polymer solar cells with alloyed acceptors
,”
Chem. Eng. J.
462
,
142327
(
2023
).
18.
T.
Park
,
S.
Lee
,
M.
Kang
et al, “
Nanowire-embedded polymer photomultiplication photodiode with EQE over 250,000%
,”
Chem. Eng. J.
418
,
129354
(
2021
).
19.
W.
Jang
,
T.-Q.
Nguyen
, and
D. H.
Wang
, “
Theoretical and experimental investigation of barrier-energy-dependent charge injection mechanisms in organic photodetectors
,”
Adv. Funct. Mater.
33
,
2209615
(
2022
).
20.
K.
Yang
,
Z.
Zhao
,
M.
Liu
et al, “
Employing liquid crystal material as regulator to enhance performance of photomultiplication type polymer photodetectors
,”
Chem. Eng. J.
427
,
131802
(
2022
).
21.
K.
Yang
,
J.
Wang
,
Z.
Zhao
et al, “
Smart strategy: Transparent hole-transporting polymer as a regulator to optimize photomultiplication-type polymer photodetectors
,”
ACS Appl. Mater. Interfaces
13
,
21565
21572
(
2021
).
22.
J.
Wang
and
Q.
Zheng
, “
Enhancing the performance of photomultiplication-type organic photodetectors using solution-processed ZnO as an interfacial layer
,”
J. Mater. Chem. C
7
,
1544
1550
(
2019
).
23.
X.
Zhao
,
M.
Liu
,
K.
Yang
et al, “
Photomultiplication type organic photodetectors with different response characteristics under forward or reverse bias
,”
Org. Electron.
108
,
106587
(
2022
).
24.
Y.
Lu
,
J.
Chen
,
T.
Chen
et al, “
Controlling defects in continuous 2D GaS films for high-performance wavelength-tunable UV-discriminating photodetectors
,”
Adv. Mater.
32
,
1906958
(
2020
).
25.
Y.
Wei
,
Z.
Ren
,
A.
Zhang
et al, “
Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity
,”
Adv. Funct. Mater.
28
,
1706690
(
2018
).
26.
Z.
Ren
,
J.
Sun
,
H.
Li
et al, “
Bilayer PbS quantum dots for high-performance photodetectors
,”
Adv. Mater.
29
,
1702055
(
2017
).
27.
J.
Kim
,
M.
Kang
,
S.
Lee
et al, “
Interfacial electrostatic-interaction-enhanced photomultiplication for ultrahigh external quantum efficiency of organic photodiodes
,”
Adv. Mater.
33
,
2104689
(
2021
).
28.
W.
Wang
,
F.
Zhang
,
M.
Du
et al, “
Highly narrowband photomultiplication type organic photodetectors
,”
Nano Lett.
17
,
1995
2002
(
2017
).
29.
C.
Li
,
H.
Wang
,
F.
Wang
et al, “
Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging
,”
Light: Sci. Appl.
9
,
31
(
2020
).
30.
S.
Cui
,
Z.
Mei
,
Y.
Zhang
et al, “
Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates
,”
Adv. Opt. Mater.
5
,
1700454
(
2017
).
31.
Z.
Zhao
,
B.
Liu
,
C.
Xu
et al, “
Highly stable photomultiplication-type organic photodetectors with single polymers containing intramolecular traps as the active layer
,”
J. Mater. Chem. C
10
,
7822
7830
(
2022
).
32.
H.
Bristow
,
P.
Jacoutot
,
A. D.
Scaccabarozzi
et al, “
Nonfullerene-based organic photodetectors for ultrahigh sensitivity visible light detection
,”
ACS Appl. Mater. Interfaces
12
,
48836
48844
(
2020
).
33.
M.
Yao
,
J.
Jiang
,
D.
Xin
et al, “
High-temperature stable FAPbBr3 single crystals for sensitive x-ray and visible light detection toward space
,”
Nano Lett.
21
,
3947
3955
(
2021
).
34.
M.
Kielar
,
T.
Hamid
,
M.
Wiemer
et al, “
Light detection in open-circuit voltage mode of organic photodetectors
,”
Adv. Funct. Mater.
30
,
1907964
(
2020
).
35.
R.
Li
,
J.
Peng
,
Y.
Xu
et al, “
Pseudohalide additives enhanced perovskite photodetectors
,”
Adv. Opt. Mater.
9
,
2001587
(
2021
).
36.
Z.
Zhao
,
C.
Xu
,
Y.
Ma
et al, “
Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry-Pérot resonator architecture
,”
Adv. Funct. Mater.
32
,
2203606
(
2022
).
37.
J.
Wang
,
S.
Ullbrich
,
J.-L.
Hou
et al, “
Organic cavity photodetectors based on nanometer-thick active layers for tunable monochromatic spectral response
,”
ACS Photonics
6
,
1393
1399
(
2019
).
38.
B.
Xie
,
R.
Xie
,
K.
Zhang
et al, “
Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation
,”
Nat. Commun.
11
,
2871
(
2020
).
39.
Z.
Zhao
,
M.
Liu
,
K.
Yang
et al, “
Highly sensitive narrowband photomultiplication-type organic photodetectors prepared by transfer-printed technology
,”
Adv. Funct. Mater.
31
,
2106009
(
2021
).
40.
J.
Kim
,
C.
So
,
M.
Kang
et al, “
A regioregular donor-acceptor copolymer allowing a high gain-bandwidth product to be obtained in photomultiplication-type organic photodiodes
,”
Mater. Horiz.
8
,
276
283
(
2021
).
You do not currently have access to this content.