The interaction of light with time-varying materials offers intriguing opportunities for controlling light scattering and wavefront manipulation, thereby unlocking fascinating applications in the realm of optics and photonics. In this study, we present an analytical solution for the scattering from a particle made of a material with time-varying permittivity by exploiting the T-matrix approach. Through the manipulation of the active medium's eigenvalues, we demonstrate the pivotal ability to regulate the elements of a dynamically controlled T-matrix, thus enabling precise control over the scattering characteristics of the particle. Crucially, this dynamic control is achieved without resorting to modifying the particle's inherent physical parameters, such as shape, size, and dispersion. We demonstrate that the eigenvalues of the dynamic material can be skillfully manipulated through the adequate choice of the particle's modulation function, resulting in either in-phase or out-of-phase interactions between the magnetic and electric dipole modes, allowing us to satisfy the Kerker conditions at diverse harmonics. The results of the optimal modulation functions are presented in both the near-field and far-field regions, revealing time modulation as a dynamic means of achieving unidirectional scattering. Our findings pave the way for developing time-varying structures comprising dynamic meta-atoms, offering valuable insight into advanced light–matter interactions, and providing lucrative guidance for future research in the realm of dynamic photonic systems.

1.
E.
Galiffi
,
R.
Tirole
,
S.
Yin
,
H.
Li
,
S.
Vezzoli
,
P. A.
Huidobro
,
M. G.
Silveirinha
,
R.
Sapienza
,
A.
Alù
, and
J.
Pendry
, “
Photonics of time-varying media
,”
Adv. Photonics
4
,
014002
(
2022
).
2.
D.
Ramaccia
,
A.
Alù
,
A.
Toscano
, and
F.
Bilotti
, “
Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials
,”
Appl. Phys. Lett.
118
,
101901
(
2021
).
3.
H. B.
Sedeh
,
M. M.
Salary
, and
H.
Mosallaei
, “
Time-varying optical vortices enabled by time-modulated metasurfaces
,”
Nanophotonics
9
,
2957
2976
(
2020
).
4.
H.
Barati Sedeh
,
M. M.
Salary
, and
H.
Mosallaei
, “
Topological space-time photonic transitions in angular-momentum-biased metasurfaces
,”
Adv. Opt. Mater.
8
,
2000075
(
2020
).
5.
R.
Sabri
and
H.
Mosallaei
, “
Inverse design of perimeter-controlled InAs-assisted metasurface for two-dimensional dynamic beam steering
,”
Nanophotonics
11
,
4515
4530
(
2022
).
6.
R.
Sabri
,
M. M.
Salary
, and
H.
Mosallaei
, “
Broadband continuous beam-steering with time-modulated metasurfaces in the near-infrared spectral regime
,”
APL Photonics
6
,
086109
(
2021
).
7.
G.
Bogdan
,
K.
Godziszewski
, and
Y.
Yashchyshyn
, “
Time-modulated antenna array with beam-steering for low-power wide-area network receivers
,”
IEEE Antennas Wireless Propag. Lett.
19
,
1876
1880
(
2020
).
8.
H. B.
Sedeh
,
M. M.
Salary
, and
H.
Mosallaei
, “
Adaptive multichannel terahertz communication by space-time shared aperture metasurfaces
,”
IEEE Access
8
,
185919
185937
(
2020
).
9.
H. B.
Sedeh
,
M. M.
Salary
, and
H.
Mosallaei
, “
Active multiple access secure communication enabled by graphene-based time-modulated metasurfaces
,”
IEEE Trans. Antennas Propag.
70
,
664
679
(
2022
).
10.
D. L.
Sounas
and
A.
Alu
, “
Non-reciprocal photonics based on time modulation
,”
Nat. Photonics
11
,
774
783
(
2017
).
11.
H.
Barati Sedeh
,
H.
Mohammadi Dinani
, and
H.
Mosallaei
, “
Optical nonreciprocity via transmissive time-modulated metasurfaces
,”
Nanophotonics
11
,
4135
4148
(
2022
).
12.
X.
Guo
,
Y.
Ding
,
Y.
Duan
, and
X.
Ni
, “
Nonreciprocal metasurface with space–time phase modulation
,”
Light: Sci. Appl.
8
,
1
9
(
2019
).
13.
M. M.
Salary
,
S.
Jafar-Zanjani
, and
H.
Mosallaei
, “
Nonreciprocal optical links based on time-modulated nanoantenna arrays: Full-duplex communication
,”
Phys. Rev. B
99
,
045416
(
2019
).
14.
H.
Barati Sedeh
,
M. M.
Salary
, and
H.
Mosallaei
, “
Optical pulse compression assisted by high-q time-modulated transmissive metasurfaces
,”
Laser Photonics Rev.
16
,
2100449
(
2022
).
15.
J.
Pendry
,
E.
Galiffi
, and
P.
Huidobro
, “
Gain mechanism in time-dependent media
,”
Optica
8
,
636
637
(
2021
).
16.
E.
Galiffi
,
P.
Huidobro
, and
J. B.
Pendry
, “
Broadband nonreciprocal amplification in luminal metamaterials
,”
Phys. Rev. Lett.
123
,
206101
(
2019
).
17.
J.
Li
,
Y.
Jing
, and
S. A.
Cummer
, “
Nonreciprocal coupling in space-time modulated systems at exceptional points
,”
Phys. Rev. B
105
,
L100304
(
2022
).
18.
H.
Kazemi
,
M. Y.
Nada
,
T.
Mealy
,
A. F.
Abdelshafy
, and
F.
Capolino
, “
Exceptional points of degeneracy induced by linear time-periodic variation
,”
Phys. Rev. Appl.
11
,
014007
(
2019
).
19.
H.
Kazemi
,
M. Y.
Nada
,
A.
Nikzamir
,
F.
Maddaleno
, and
F.
Capolino
, “
Experimental demonstration of exceptional points of degeneracy in linear time periodic systems and exceptional sensitivity
,”
J. Appl. Phys.
131
,
144502
(
2022
).
20.
H.
Rajabalipanah
,
A.
Abdolali
,
S.
Iqbal
,
L.
Zhang
, and
T. J.
Cui
, “
Analog signal processing through space-time digital metasurfaces
,”
Nanophotonics
10
,
1753
1764
(
2021
).
21.
J. A.
Hodge
,
K. V.
Mishra
, and
A. I.
Zaghloul
, “
Intelligent time-varying metasurface transceiver for index modulation in 6G wireless networks
,”
IEEE Antennas Wireless Propag. Lett.
19
,
1891
1895
(
2020
).
22.
J. C.
Ke
,
J. Y.
Dai
,
J. W.
Zhang
,
Z.
Chen
,
M. Z.
Chen
,
Y.
Lu
,
L.
Zhang
,
L.
Wang
,
Q. Y.
Zhou
,
L.
Li
, et al, “
Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases
,”
Light: Sci. Appl.
11
,
1
11
(
2022
).
23.
R.
Sabri
,
M. M.
Salary
, and
H.
Mosallaei
, “
Single sideband suppressed carrier modulation with spatiotemporal metasurfaces at near-infrared spectral regime
,”
J. Lightwave Technol.
40
,
3802
(
2022
).
24.
M. M.
Salary
and
H.
Mosallaei
, “
Time-modulated conducting oxide metasurfaces for adaptive multiple access optical communication
,”
IEEE Trans. Antennas Propag.
68
,
1628
1642
(
2020
).
25.
I.
Psarobas
,
N.
Papanikolaou
,
N.
Stefanou
,
B.
Djafari-Rouhani
,
B.
Bonello
, and
V.
Laude
, “
Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity
,”
Phys. Rev. B
82
,
174303
(
2010
).
26.
G.
Gantzounis
,
N.
Papanikolaou
, and
N.
Stefanou
, “
Nonlinear interactions between high-q optical and acoustic modes in dielectric particles
,”
Phys. Rev. B
84
,
104303
(
2011
).
27.
E.
Almpanis
,
Optomagnonic Structures: Novel Architectures for Simultaneous Control of Light and Spin Waves
(
World Scientific
,
2021
).
28.
M. R.
Shcherbakov
,
S.
Liu
,
V. V.
Zubyuk
,
A.
Vaskin
,
P. P.
Vabishchevich
,
G.
Keeler
,
T.
Pertsch
,
T. V.
Dolgova
,
I.
Staude
,
I.
Brener
et al, “
Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces
,”
Nat. Commun.
8
,
17
(
2017
).
29.
S. A.
Mann
,
N.
Nookala
,
S. C.
Johnson
,
M.
Cotrufo
,
A.
Mekawy
,
J. F.
Klem
,
I.
Brener
,
M. B.
Raschke
,
A.
Alù
, and
M. A.
Belkin
, “
Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces
,”
Optica
8
,
606
613
(
2021
).
30.
J. R.
Zurita-Sánchez
,
P.
Halevi
, and
J. C.
Cervantes-Gonzalez
, “
Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ ( t )
,”
Phys. Rev. A
79
,
053821
(
2009
).
31.
J. S.
Martínez-Romero
,
O.
Becerra-Fuentes
, and
P.
Halevi
, “
Temporal photonic crystals with modulations of both permittivity and permeability
,”
Phys. Rev. A
93
,
063813
(
2016
).
32.
A.
Mock
,
D.
Sounas
, and
A.
Alù
, “
Magnet-free circulator based on spatiotemporal modulation of photonic crystal defect cavities
,”
ACS Photonics
6
,
2056
2066
(
2019
).
33.
J.
Reyes-Ayona
and
P.
Halevi
, “
Observation of genuine wave vector (k or β) gap in a dynamic transmission line and temporal photonic crystals
,”
Appl. Phys. Lett.
107
,
074101
(
2015
).
34.
S.
Taravati
and
G. V.
Eleftheriades
, “
Microwave space-time-modulated metasurfaces
,”
ACS Photonics
9
,
305
318
(
2022
).
35.
X.
Wang
and
C.
Caloz
, “
Spread-spectrum selective camouflaging based on time-modulated metasurface
,”
IEEE Trans. Antennas Propag.
69
,
286
295
(
2021
).
36.
M. M.
Salary
,
S.
Jafar-Zanjani
, and
H.
Mosallaei
, “
Electrically tunable harmonics in time-modulated metasurfaces for wavefront engineering
,”
New J. Phys.
20
,
123023
(
2018
).
37.
I.
Stefanou
,
P. A.
Pantazopoulos
, and
N.
Stefanou
, “
Light scattering by a spherical particle with a time-periodic refractive index
,”
JOSA B
38
,
407
414
(
2021
).
38.
K.
Schab
,
B.
Shirley
, and
K.
Kerby-Patel
, “
Scattering properties of spherical time-varying conductive shells
,”
IEEE Trans. Antennas Propag.
70
,
7011
(
2022
).
39.
G.
Ptitcyn
,
A.
Lamprianidis
,
T.
Karamanos
,
V.
Asadchy
,
R.
Alaee
,
M.
Müller
,
M.
Albooyeh
,
M. S.
Mirmoosa
,
S.
Fan
,
S.
Tretyakov
et al, “
Floquet–Mie theory for time-varying dispersive spheres
,”
Laser Photonics Rev.
17
,
2100683
(
2023
).
40.
V.
Asadchy
,
A.
Lamprianidis
,
G.
Ptitcyn
,
M.
Albooyeh
,
T.
Karamanos
,
R.
Alaee
,
S.
Tretyakov
,
C.
Rockstuhl
,
S.
Fan
et al, “
Parametric Mie resonances and directional amplification in time-modulated scatterers
,”
Phys. Rev. Appl.
18
,
054065
(
2022
).
41.
F.
Xu
,
K.
Ren
,
G.
Gouesbet
,
G.
Gréhan
, and
X.
Cai
, “
Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid
,”
JOSA A
24
,
119
131
(
2007
).
42.
J. A.
Lock
and
G.
Gouesbet
, “
Generalized Lorenz–Mie theory and applications
,”
J. Quant. Spectrosc. Radiat. Transfer
110
,
800
807
(
2009
).
43.
H. B.
Sedeh
,
D. G.
Pires
,
N.
Chandra
,
J.
Gao
,
D.
Tsvetkov
,
P.
Terekhov
,
I.
Kravchenko
, and
N.
Litchinitser
, “
Manipulation of scattering spectra with topology of light and matter
,”
Laser Photonics Rev.
17
,
2200472
(
2023
).
44.
M. M.
Sadafi
,
M.
Taghavi
,
A. F.
da Mota
, and
H.
Mosallaei
, “
Optical manipulation of nanoparticles: A selective excitation approach using highly focused orbital angular momentum beams
,”
Adv. Photonics Res.
4
,
2200224
(
2023
).
45.
G.
Gouesbet
,
J.
Lock
, and
G.
Gréhan
, “
Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review
,”
J. Quant. Spectrosc. Radiat. Transfer
112
,
1
27
(
2011
).
46.
S.
Ghadarghadr
and
H.
Mosallaei
, “
Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres
,”
IEEE Trans. Antennas Propag.
57
,
149
160
(
2009
).
47.
P.
Albella
,
T.
Shibanuma
, and
S. A.
Maier
, “
Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers
,”
Sci. Rep.
5
,
18322
(
2015
).
48.
A.
Pors
,
S. K.
Andersen
, and
S. I.
Bozhevolnyi
, “
Unidirectional scattering by nanoparticles near substrates: Generalized Kerker conditions
,”
Opt. Express
23
,
28808
28828
(
2015
).
49.
M.
Taghavi
,
M. M.
Salary
, and
H.
Mosallaei
, “
Multifunctional metasails for self-stabilized beam-riding and optical communication
,”
Nanoscale Adv.
4
,
1727
1740
(
2022
).
50.
S.
Soleymani
,
S.
Seyyedmasoumian
,
A.
Attariabad
,
S.
Soleymani
,
F.
Bayat
, and
H.
Sabet
, “
Controlling solar radiation forces with graphene in plasmonic metasurface
,” arXiv:2301.06239 (
2023
).
51.
M.
Taghavi
and
H.
Mosallaei
, “
Increasing the stability margins using multi-pattern metasails and multi-modal laser beams
,”
Sci. Rep.
12
,
20034
(
2022
).
52.
M. M.
Sadafi
,
H.
Karami
, and
M.
Hosseini
, “
A tunable hybrid graphene-metal metamaterial absorber for sensing in the THz regime
,”
Curr. Appl. Phys.
31
,
132
140
(
2021
).
53.
W.
Liu
and
Y. S.
Kivshar
, “
Generalized Kerker effects in nanophotonics and meta-optics
,”
Opt. Express
26
,
13085
13105
(
2018
).
54.
S.
Vezzoli
,
V.
Bruno
,
C.
DeVault
,
T.
Roger
,
V. M.
Shalaev
,
A.
Boltasseva
,
M.
Ferrera
,
M.
Clerici
,
A.
Dubietis
, and
D.
Faccio
, “
Optical time reversal from time-dependent epsilon-near-zero media
,”
Phys. Rev. Lett.
120
,
043902
(
2018
).
55.
L.
Caspani
,
R.
Kaipurath
,
M.
Clerici
,
M.
Ferrera
,
T.
Roger
,
J.
Kim
,
N.
Kinsey
,
M.
Pietrzyk
,
A.
Di Falco
,
V. M.
Shalaev
et al, “
Enhanced nonlinear refractive index in ε-near-zero materials
,”
Phys. Rev. Lett.
116
,
233901
(
2016
).
56.
J.
Sloan
,
N.
Rivera
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Optical properties of dispersive time-dependent materials
,” arXiv:2211.16166 (
2022
).

Supplementary Material

You do not currently have access to this content.