In this Letter, we report on the phase-controlled topological plasmons in 1D graphene nanoribbons (GNRs) based on a Su−Schrieffer−Heeger (SSH) model variant. By considering the dipole–dipole mode interactions, we first study the normal SSH model by an effective Hamiltonian and calculate the Zak phase as a topological invariant, finding that it is nontrivial (trivial) when the coupling distance is bigger (smaller) than half the period. Then, we reveal that the edge modes with fields highly localized at only one side exist in the model with nontrivial topology and shows the robustness of strong field confinement and extreme frequency stability against in-plane and out-of-plane disorders. Finally, we introduce the offset SSH model variant by vertically offsetting one of the GNR in SSH unit, which allows us to greatly engineer both the width of topological gap and the number of topological windows. The underlying physics are uncovered by defining a parameter called phase difference, which reveals that the topological edge modes appear (disappear) generally near the positions where the inter-unit coupling strength is bigger (smaller) than the intra-unit coupling strength, and, more notably, the phase difference is around even (odd) multiple numbers of π, which is much different from the normal SSH model where the topological phase is simply affected by the resonator distance. In addition to opening up a possibility to explore the fundamental physics of topologically protected graphene plasmons, this work also offers potential applications of these concepts to design graphene-based plasmon devices with immunity to structural imperfections.

1.
Z.
Wang
,
Y.
Chong
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Observation of unidirectional backscattering-immune topological electromagnetic states
,”
Nature
461
,
772
775
(
2009
).
2.
W.-J.
Chen
,
S.-J.
Jiang
,
X.-D.
Chen
,
B.
Zhu
,
L.
Zhou
,
J.-W.
Dong
, and
C. T.
Chan
, “
Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide
,”
Nat. Commun.
5
,
5782
(
2014
).
3.
X.
Yin
,
J.
Jin
,
M.
Soljačić
,
C.
Peng
, and
B.
Zhen
, “
Observation of topologically enabled unidirectional guided resonances
,”
Nature
580
,
467
471
(
2020
).
4.
B. X.
Wang
and
C. Y.
Zhao
, “
Topological phonon polaritons in one-dimensional non-Hermitian silicon carbide nanoparticle chains
,”
Phys. Rev. B
98
,
165435
(
2018
).
5.
Z.
Zhang
,
M. H.
Teimourpour
,
J.
Arkinstall
,
M.
Pan
,
P.
Miao
,
H.
Schomerus
,
R.
El-Ganainy
, and
L.
Feng
, “
Experimental realization of multiple topological edge states in a 1D photonic lattice
,”
Laser Photonics Rev.
13
,
1800202
(
2019
).
6.
Z.
Jiang
,
M.
Rösner
,
R. E.
Groenewald
, and
S.
Haas
, “
Localized plasmons in topological insulators
,”
Phys. Rev. B
101
,
045106
(
2020
).
7.
S.
Kruk
,
A.
Poddubny
,
D.
Smirnova
,
L.
Wang
,
A.
Slobozhanyuk
,
A.
Shorokhov
,
I.
Kravchenko
,
B.
Luther-Davies
, and
Y.
Kivshar
, “
Nonlinear light generation in topological nanostructures
,”
Nat. Nanotechnol.
14
,
126
130
(
2019
).
8.
A. B.
Khanikaev
and
G.
Shvets
, “
Two-dimensional topological photonics
,”
Nat. Photonics
11
,
763
773
(
2017
).
9.
L.
Lu
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Topological photonics
,”
Nat. Photonics
8
,
821
829
(
2014
).
10.
Z.-K.
Shao
,
H.-Z.
Chen
,
S.
Wang
,
X.-R.
Mao
,
Z.-Q.
Yang
,
S.-L.
Wang
,
X.-X.
Wang
,
X.
Hu
, and
R.-M.
Ma
, “
A high-performance topological bulk laser based on band-inversion-induced reflection
,”
Nat. Nanotechnol.
15
,
67
72
(
2020
).
11.
M. A.
Bandres
,
S.
Wittek
,
G.
Harari
,
M.
Parto
,
J.
Ren
,
M.
Segev
,
D. N.
Christodoulides
, and
M.
Khajavikhan
, “
Topological insulator laser: Experiments
,”
Science
359
,
eaar4005
(
2018
).
12.
M.
Jung
,
Z.
Fan
, and
G.
Shvets
, “
Midinfrared plasmonic valleytronics in metagate-tuned graphene
,”
Phys. Rev. Lett.
121
,
086807
(
2018
).
13.
D.
Jin
,
T.
Christensen
,
M.
Soljačić
,
N. X.
Fang
,
L.
Lu
, and
X.
Zhang
, “
Infrared topological plasmons in graphene
,”
Phys. Rev. Lett.
118
,
245301
(
2017
).
14.
Z.-D.
Zhang
,
X.-M.
Zhang
,
S.-Y.
Yu
,
M.-H.
Lu
, and
Y.-F.
Chen
, “
Tunable topological fano resonances in graphene-based nanomechanical lattices
,”
Phys. Rev. Appl.
18
,
054029
(
2022
).
15.
F.
Zhiyuan
,
D.-G.
Shourya
,
G.
Ran
,
T.
Simeon
,
B.
Melissa
,
J.
Minwoo
,
R. S. I.
Ganjigunte
,
J. G.
Alexander
,
S.
Maxim
,
F.
Boris
,
D. C.
Joshua
,
A.
Monica
,
A.
Jeffery
, and
S.
Gennady
, “
Electrically defined topological interface states of graphene surface plasmons based on a gate-tunable quantum Bragg grating
,”
Nanophotonics
8
,
1417
1431
(
2019
).
16.
T. G.
Rappoport
,
Y. V.
Bludov
,
F. H. L.
Koppens
, and
N. M. R.
Peres
, “
Topological graphene plasmons in a plasmonic realization of the Su–Schrieffer–Heeger model
,”
ACS Photonics
8
,
1817
1823
(
2021
).
17.
L.
Ge
,
L.
Wang
,
M.
Xiao
,
W.
Wen
,
C. T.
Chan
, and
D.
Han
, “
Topological edge modes in multilayer graphene systems
,”
Opt. Express
23
,
21585
21595
(
2015
).
18.
Y. C.
Lin
,
S. H.
Chou
, and
W. J.
Hsueh
, “
Tunable light absorption of graphene using topological interface states
,”
Opt. Lett.
45
,
4369
4372
(
2020
).
19.
T.
Wei
,
Z.
Su
, and
Y.
Wang
, “
Graphene-based dual-band near-perfect absorption in Rabi splitting between topological edge and Fabry–Perot cavity modes
,”
J. Opt.
23
,
125003
(
2021
).
20.
S.-X.
Xia
,
D.
Zhang
,
Z.
Zheng
,
X.
Zhai
,
H.
Li
,
J.-Q.
Liu
,
L.-L.
Wang
, and
S.-C.
Wen
, “
Topological plasmons in stacked graphene nanoribbons
,”
Opt. Lett.
48
,
644
647
(
2023
).
21.
D.
Pan
,
R.
Yu
,
H.
Xu
, and
F. J.
García de Abajo
, “
Topologically protected Dirac plasmons in a graphene superlattice
,”
Nat. Commun.
8
,
1243
(
2017
).
22.
S. R.
Pocock
,
X.
Xiao
,
P. A.
Huidobro
, and
V.
Giannini
, “
Topological plasmonic chain with retardation and radiative effects
,”
ACS Photonics
5
,
2271
2279
(
2018
).
23.
A.
Poddubny
,
A.
Miroshnichenko
,
A.
Slobozhanyuk
, and
Y.
Kivshar
, “
Topological Majorana states in zigzag chains of plasmonic nanoparticles
,”
ACS Photonics
1
,
101
105
(
2014
).
24.
B. X.
Wang
and
C. Y.
Zhao
, “
Wideband tunable infrared topological plasmon polaritons in dimerized chains of doped-silicon nanoparticles
,”
J. Appl. Phys.
127
,
073106
(
2020
).
25.
B. X.
Wang
and
C. Y.
Zhao
, “
Terahertz topological plasmon polaritons for robust temperature sensing
,”
Phys. Rev. Mater.
4
,
075201
(
2020
).
26.
S.
Lin
,
L.
Zhang
,
T.
Tian
,
C.-K.
Duan
, and
J.
Du
, “
Dynamic observation of topological soliton states in a programmable nanomechanical lattice
,”
Nano Lett.
21
,
1025
1031
(
2021
).
27.
F. J.
García de Abajo
, “
Graphene plasmonics: Challenges and opportunities
,”
ACS Photonics
1
,
135
152
(
2014
).
28.
S. X.
Xia
,
X.
Zhai
,
L. L.
Wang
, and
S. C.
Wen
, “
Plasmonically induced transparency in double-layered graphene nanoribbons
,”
Photonics Res.
6
,
692
702
(
2018
).
29.
I.
Silveiro
,
J. M. P.
Ortega
, and
F. J. G. D.
Abajo
, “
Plasmon wave function of graphene nanoribbons
,”
New J. Phys.
17
,
083013
(
2015
).
30.
J.
Zak
, “
Berry's phase for energy bands in solids
,”
Phys. Rev. Lett.
62
,
2747
2750
(
1989
).
31.
M.
Xiao
,
Z. Q.
Zhang
, and
C. T.
Chan
, “
Surface impedance and bulk band geometric phases in one-dimensional systems
,”
Phys. Rev. X
4
,
021017
(
2014
).
32.
A.
Goetschy
and
S. E.
Skipetrov
, “
Non-Hermitian Euclidean random matrix theory
,”
Phys. Rev. E
84
,
011150
(
2011
).
33.
B. X.
Wang
and
C. Y.
Zhao
, “
Topological photonic states in one-dimensional dimerized ultracold atomic chains
,”
Phys. Rev. A
98
,
023808
(
2018
).
34.
R.
Wang
,
M.
Röntgen
,
C. V.
Morfonios
,
F. A.
Pinheiro
,
P.
Schmelcher
, and
L.
Dal Negro
, “
Edge modes of scattering chains with aperiodic order
,”
Opt. Lett.
43
,
1986
1989
(
2018
).
35.
A.
Sihvola
,
D. C.
Tzarouchis
,
P.
Ylä-Oijala
,
H.
Wallén
, and
B.
Kong
, “
Resonances in small scatterers with impedance boundary
,”
Phys. Rev. B
98
,
235417
(
2018
).
36.
T.
Christensen
,
A.-P.
Jauho
,
M.
Wubs
, and
N. A.
Mortensen
, “
Localized plasmons in graphene-coated nanospheres
,”
Phys. Rev. B
91
,
125414
(
2015
).
37.
S.
Xia
,
X.
Zhai
,
L.
Wang
,
Y.
Xiang
, and
S.
Wen
, “
Plasmonically induced transparency in phase-coupled graphene nanoribbons
,”
Phys. Rev. B
106
,
075401
(
2022
).
38.
J. K.
Asbóth
,
L.
Oroszlány
, and
A.
Pályi
, A Short Course on Topological Insulators, Lecture Notes in Physics Vol. 919 (Springer, 2016).

Supplementary Material

You do not currently have access to this content.