Colloidal assembly formed by drying of suspensions is expected to be applied to optical materials using their structural color resulting from the microstructure. We combine two numerical simulation techniques to investigate how the fabrication conditions of the self-assembled colloidal films affect their structural color. We first perform Langevin dynamics simulations to form colloidal films with various microstructures depending on the several fabrication parameters and then perform the finite-difference time-domain simulations of electromagnetic field analysis to calculate the structural color intensity of the obtained microstructures. To improve the structural color intensity, we show that the surface tension of the solvent should be sufficiently large so that capillary interactions exceed the interparticle adhesion by van der Waals force and furthermore that under this condition the smaller drying rate is favorable. This study suggests a guideline to design the fabrication process of colloidal films generating structural color.

1.
F.
Chen
,
Y.
Huang
,
R.
Li
,
S.
Zhang
,
B.
Wang
,
W.
Zhang
,
X.
Wu
,
Q.
Jiang
,
F.
Wang
, and
R.
Zhang
,
Chem. Commun.
57
,
13448
(
2021
).
2.
H.
Fudouzi
and
Y.
Xia
,
Langmuir
19
,
9653
(
2003
).
3.
Y.
Zhao
,
L.
Shang
,
Y.
Cheng
, and
Z.
Gu
,
Acc. Chem. Res.
47
,
3632
(
2014
).
4.
M.
Kohri
,
S.
Yamazaki
,
A.
Kawamura
,
T.
Taniguchi
, and
K.
Kishikawa
,
Colloids Surf., A
532
,
564
(
2017
).
5.
P. A.
Kralchevsky
and
K.
Nagayama
,
Langmuir
10
,
23
(
1994
).
6.
P. A.
Kralchevsky
and
K.
Nagayama
,
Adv. Colloid Interface Sci.
85
,
145
(
2000
).
7.
R.
Bhardwaj
,
X.
Fang
,
P.
Somasundaran
, and
D.
Attinger
,
Langmuir
26
,
7833
(
2010
).
8.
S.
Usune
,
T.
Takahashi
,
M.
Kubo
,
E.
Shoji
,
T.
Tsukada
,
O.
Koike
,
R.
Tatsumi
,
M.
Fujita
, and
T.
Adschiri
,
J. Chem. Eng. Jpn.
52
,
680
(
2019
).
9.
W.
Liu
,
M.
Kappl
,
W.
Steffen
, and
H.-J.
Butt
,
J. Colloid Interface Sci.
607
,
1661
(
2022
).
10.
Á. G.
Marín
,
H.
Gelderblom
,
D.
Lohse
, and
J. H.
Snoeijer
,
Phys. Rev. Lett.
107
,
085502
(
2011
).
11.
M.
Wang
and
J. F.
Brady
,
Soft Matter
13
,
8156
(
2017
).
12.
M. P.
Howard
,
W. F.
Reinhart
,
T.
Sanyal
,
M. S.
Shell
,
A.
Nikoubashman
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
149
,
094901
(
2018
).
13.
B.
Chun
,
T.
Yoo
, and
H. W.
Jung
,
Soft Matter
16
,
523
(
2020
).
14.
A.
Lesaine
,
D.
Bonamy
,
C. L.
Rountree
,
G.
Gauthier
,
M.
Impéror-Clerc
, and
V.
Lazarus
,
Soft Matter
17
,
1589
(
2021
).
15.
R.
Rengarajan
,
D.
Mittleman
,
C.
Rich
, and
V.
Colvin
,
Phys. Rev. E
71
,
016615
(
2005
).
16.
T.
Liu
,
B.
VanSaders
,
S. C.
Glotzer
, and
M. J.
Solomon
,
ACS Appl. Mater. Interfaces
12
,
9842
(
2020
).
17.
T.
Liu
,
B.
VanSaders
,
J. T.
Keating
,
S. C.
Glotzer
, and
M. J.
Solomon
,
Langmuir
37
,
13300
(
2021
).
18.
M.
Fujita
,
H.
Nishikawa
,
T.
Okubo
, and
Y.
Yamaguchi
,
Jpn. J. Appl. Phys.
43
,
4434
(
2004
).
19.
M.
Fujita
and
Y.
Yamaguchi
,
J. Chem. Eng. Jpn.
39
,
83
(
2006
).
20.
O.
Koike
,
S.
Ohta
,
M.
Fujita
, and
Y.
Yamaguchi
,
Jpn. J. Appl. Phys.
47
,
8124
(
2008
).
21.
A.
Fortini
,
I.
Martín-Fabiani
,
J. L.
De La Haye
,
P.-Y.
Dugas
,
M.
Lansalot
,
F.
D'agosto
,
E.
Bourgeat-Lami
,
J. L.
Keddie
, and
R. P.
Sear
,
Phys. Rev. Lett.
116
,
118301
(
2016
).
22.
M. P.
Howard
,
A.
Nikoubashman
, and
A. Z.
Panagiotopoulos
,
Langmuir
33
,
3685
(
2017
).
23.
R.
Tatsumi
,
T.
Iwao
,
O.
Koike
,
Y.
Yamaguchi
, and
Y.
Tsuji
,
Appl. Phys. Lett.
112
,
053702
(
2018
).
24.
R.
Tatsumi
,
O.
Koike
,
Y.
Yamaguchi
, and
Y.
Tsuji
,
Chem. Eng. Sci.
280
,
118993
(
2023
).
25.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
,
3rd ed
. (
Academic Press
,
Burlington, MA
,
2011
).
26.
J. N.
Goodier
and
S.
Timoshenko
,
Theory of Elasticity
,
2nd ed
. (
McGraw-Hill
,
New York
,
1970
).
27.
Y.
Tsuji
,
T.
Tanaka
, and
T.
Ishida
,
Powder Technol.
71
,
239
(
1992
).
28.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
30.
Z.-W.
Li
,
L.-J.
Chen
,
Y.
Zhao
, and
Z.-Y.
Lu
,
J. Phys. Chem. B
112
,
13842
(
2008
).
31.
J.-P.
Berenger
,
J. Comput. Phys.
114
,
185
(
1994
).
32.
A.
Richel
,
N.
Johnson
, and
D.
McComb
,
Appl. Phys. Lett.
76
,
1816
(
2000
).
33.
D. G.
Stavenga
,
Mater. Today: Proc.
1
,
109
(
2014
).
34.
T. J.
Bruno
and
P. D.
Svoronos
,
CRC Handbook of Fundamental Spectroscopic Correlation Charts
(
CRC Press
,
2005
).
You do not currently have access to this content.