For millimeter-wave power applications, GaN high-electron mobility transistors (HEMTs) are often grown epitaxially on a high-purity semi-insulating c-axis 4H-SiC substrate. For these anisotropic hexagonal materials, the design and modeling of microstrip and coplanar interconnects require detailed knowledge of both the ordinary permittivity ε and the extraordinary permittivity εǁ perpendicular and parallel, respectively, to the c-axis. However, conventional dielectric characterization techniques make it difficult to measure εǁ alone or to separate εǁ from ε. As a result, there is little data for εǁ, especially at millimeter-wave frequencies. This work demonstrates techniques for characterizing εǁ of 4H SiC using substrate-integrated waveguides (SIWs) or SIW resonators. The measured εǁ on seven SIWs and eleven resonators from 110 to 170 GHz is within ±1% of 10.2. Because the SIWs and resonators can be fabricated on the same SiC substrate together with HEMTs and other devices, they can be conveniently measured on-wafer for precise material-device correlation. Such permittivity characterization techniques can be extended to other frequencies, materials, and orientations.

1.
J. R.
Jenny
,
S. G.
Muller
,
A.
Powell
,
V. F.
Tsvetkov
,
H. M.
Hobgood
,
R. C.
Class
, and
C. H.
Carter
, Jr.
,
J. Electron Mater.
31
,
366
(
2002
).
2.
J. L.
Patrick
and
W. J.
Choyke
,
Phys. Rev. B.
2
,
2255
(
1970
).
3.
P. T. B.
Shaffer
,
Appl. Opt.
10
,
1034
(
1971
).
4.
O. P. A.
Lindquist
,
K.
Jarrendahl
,
S.
Peters
,
J. T.
Zettler
,
C.
Cobet
,
N.
Esser
,
D. E.
Aspnes
,
A.
Henry
, and
N. V.
Edwards
,
Appl. Phys. Lett.
78
,
2715
(
2001
).
5.
J. M.
Dutta
,
G.
Yu
, and
C. R.
Jones
, in
Proceedings of Joint 31st International Conference on Infrared Millimeter Waves
,
Shanghai, China
(
IEEE
,
2006
), p.
411
.
6.
S.
Chen
,
M. N.
Afsar
, and
D.
Sakdatorn
,
IEEE Trans. Instrum. Meas.
57
,
706
(
2008
).
7.
J. G.
Hartnett
,
D.
Mouneyrac
,
J.
Krupka
,
J.-M.
Le Floch
,
M. E.
Tobar
, and
D.
Cros
,
J. Appl. Phys.
109
,
064107
(
2011
).
8.
C. R.
Jones
,
J.
Dutta
,
G.
Yu
, and
Y.
Gao
,
J. Infrared. Milli. Terahz. Waves
32
,
838
(
2011
).
9.
M.
Naftaly
,
J. F.
Molloy
,
B.
Magnusson
,
Y. M.
Andreev
, and
G. V.
Lanskii
,
Opt. Express
24
,
2590
(
2016
).
10.
A. T.
Tarekegne
,
B.
Zhou
,
K.
Kaltenecker
,
K.
Iwaszczuk
,
S.
Clark
, and
P. U.
Jepsen
,
Opt. Express
27
,
3618
(
2019
).
11.
See https://www.euramet.org/technical-committees/tc-projects/details/project/comparison-on-material-parameter-measurements-in-the-thz-spectral-range-with-optical-resonant-and-v/ for
D.
Allal
,
U.
Arz
,
G.
Gaumann
,
A.
Gregory
,
M.
Hudlicka
,
A.
Kazemipour
,
T.
Kleine-Ostmann
,
G. N.
Phung
,
P.
Marsik
,
M.
Naftaly
,
H.
Sakarya
,
X.
Shang
,
D.
Ulm
,
M.
Wojciechowski
, and
P.
Zagrajek
, EURAMET TC Project Final Report (
2022
).
12.
L.
Li
,
S.
Reyes
,
M. J.
Asadi
,
X.
Wang
,
G.
Fabi
,
E.
Ozdemir
,
W.
Wu
,
P.
Fay
, and
J. C. M.
Hwang
, in
ARFTG Microwave Measurement Conference
,
Las Vegas, NV, USA
,
2023
.
13.
M. J.
Asadi
,
L.
Li
,
W.
Zhao
,
K.
Nomoto
,
P.
Fay
,
H. G.
Xing
,
D.
Jena
, and
J. C. M.
Hwang
, in proceeding of
IEEE MTT-S International Microwave Symposium (IMS)
,
Atlanta, GA, USA
(
IEEE
,
2021
), p.
669
.
14.
L.
Li
,
S.
Reyes
,
M. J.
Asadi
,
D.
Jena
,
H. G.
Xing
,
P.
Fay
, and
J. C. M.
Hwang
, in
ARFTG Microwave Measurement Conference
,
Denver, CO, USA
,
2022
.
15.
S.
Hu
,
Y.
Xiong
,
J.
Shi
,
L.
Wang
,
B.
Zhang
,
D.
Zhao
,
T. G.
Lim
, and
X.
Yuan
, in
Proceedings of IEEE Electronic Components and Technology Conference
,
Las Vegas, NV, USA
(
IEEE
,
2010
), p.
46
.
16.
F.
Xu
and
K.
Wu
,
IEEE Trans. Microwave Theory Techn.
53
,
66
(
2005
).
17.
Y.
Kato
and
M.
Horibe
,
IEEE Trans. Instrum. Meas.
68
,
1796
(
2019
).
18.
A.
Davidson
,
K.
Jones
, and
E.
Strid
, in proceedings of
ARFTG Conference Dig.
,
Monterrey, CA
(
ARFTG
,
1990
), p.
57
.
19.
R. B.
Marks
,
IEEE Trans. Microwave Theory Techn.
39
,
1205
(
1991
).

Supplementary Material

You do not currently have access to this content.