This work reports on a systematic investigation of the frequency comb enhancement in hybrid InAs/GaAs multisection quantum dot lasers on silicon. The colliding configuration provides an operating frequency at twice the fundamental frequency of the free-spectral range of the cold cavity. In particular, the contribution of the linewidth enhancement factor, or αH-factor, on the comb formation is investigated with respect to the reverse voltage and temperature conditions. When those parameters are varied, the formation of the combs is found to increase with respect to αH. In addition, we also demonstrate that this quantum dot laser exhibits a comb behavior, while the beatnote locking is not fully achieved. This effect is essentially due to the dispersion which is not fully compensated from the optical nonlinearities. These results bring further insights on comb and pulse formations in multisection quantum dot lasers, which is important for designing future light sources for on-chip and chip-to-chip optical interconnects.

1.
Current IoT forecast highlights
,” Technical Report,
Transforma Insights
,
2022
.
2.
C.
Zhang
and
C.
Mezzanotte
, “
Training deep learning-based recommender models of 100 trillion parameters over Google Cloud
,” Technical Report,
Google Cloud
,
2022
.
3.
D.
Pandiyan
and
C.-J.
Wu
, “
Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms
,” in
2014 IEEE International Symposium on Workload Characterization (IISWC
) (
IEEE
,
2014
), pp.
171
180
.
4.
O.
Mutlu
,
S.
Ghose
,
J.
Gómez-Luna
, and
R.
Ausavarungnirun
, “
Processing data where it makes sense: Enabling in-memory computation
,”
Microprocess. Microsyst.
67
,
28
41
(
2019
).
5.
M. S. Q.
Zulkar Nine
,
L.
Di Tacchio
,
A.
Imran
,
T.
Kosar
,
M. F.
Bulut
, and
J.
Hwang
, “
Greendataflow: Minimizing the energy footprint of global data movement
,” in
2018 IEEE International Conference on Big Data (Big Data
) (
IEEE
,
2018
), pp.
335
342
.
6.
B.
Feinberg
,
B. C.
Heyman
,
D.
Mikhailenko
,
R.
Wong
,
A. C.
Ho
, and
E.
Ipek
, “
Commutative data reordering: A new technique to reduce data movement energy on sparse inference workloads
,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA
) (
IEEE
,
2020
), pp.
1076
1088
.
7.
G.
Kurczveil
,
Y.
Yuan
,
J.
Youn
,
B.
Tossoun
,
Y.
Hu
,
S.
Mathai
,
P.
Sun
,
J.
Hulme
, and
D.
Liang
, “
Innovative DWDM silicon photonics for high-performance computing
,” in
Silicon Photonics for High-Performance Computing and Beyond
(
CRC Press
,
2021
), pp.
191
221
.
8.
D.
Bimberg
, “
Quantum dot based nanophotonics and nanoelectronics
,”
Electron. Lett.
44
,
168
(
2008
).
9.
D.
Deppe
,
K.
Shavritranuruk
,
G.
Ozgur
,
H.
Chen
, and
S.
Freisem
, “
Quantum dot laser diode with low threshold and low internal loss
,”
Electron. Lett.
45
,
54
56
(
2009
).
10.
P.
Borri
,
W.
Langbein
,
J. M.
Hvam
,
F.
Heinrichsdorff
,
M.-H.
Mao
, and
D.
Bimberg
, “
Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers
,”
IEEE Photonics Technol. Lett.
12
,
594
596
(
2000
).
11.
D.
Gready
,
G.
Eisenstein
,
C.
Gilfert
,
V.
Ivanov
, and
J. P.
Reithmaier
, “
High-speed low-noise InAs/InAlGaAs/InP 1.55-μm quantum-dot lasers
,”
IEEE Photonics Technol. Lett.
24
,
809
811
(
2012
).
12.
J.
Duan
,
X.-G.
Wang
,
Y.-G.
Zhou
,
C.
Wang
, and
F.
Grillot
, “
Carrier-noise-enhanced relative intensity noise of quantum dot lasers
,”
IEEE J. Quantum Electron.
54
,
1
7
(
2018
).
13.
H.
Huang
,
J.
Duan
,
B.
Dong
,
J.
Norman
,
D.
Jung
,
J. E.
Bowers
, and
F.
Grillot
, “
Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback
,”
APL Photonics
5
,
016103
(
2020
).
14.
B.
Dong
,
H.
Huang
,
J.
Duan
,
G.
Kurczveil
,
D.
Liang
,
R. G.
Beausoleil
, and
F.
Grillot
, “
Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection
,”
Opt. Lett.
44
,
5755
5758
(
2019
).
15.
F.
Cappelli
,
G.
Villares
,
S.
Riedi
, and
J.
Faist
, “
Intrinsic linewidth of quantum cascade laser frequency combs
,”
Optica
2
,
836
840
(
2015
).
16.
L. L.
Columbo
,
S.
Barbieri
,
C.
Sirtori
, and
M.
Brambilla
, “
Dynamics of a broad-band quantum cascade laser: From chaos to coherent dynamics and mode-locking
,”
Opt. Express
26
,
2829
2847
(
2018
).
17.
M.
Piccardo
and
F.
Capasso
, “
Laser frequency combs with fast gain recovery: Physics and applications
,”
Laser Photonics Rev.
16
,
2100403
(
2022
).
18.
J.
Duan
,
H.
Huang
,
Z. G.
Lu
,
P. J.
Poole
,
C.
Wang
, and
F.
Grillot
, “
Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers
,”
Appl. Phys. Lett.
112
,
121102
(
2018
).
19.
F.
Grillot
,
W. W.
Chow
,
B.
Dong
,
S.
Ding
,
H.
Huang
, and
J.
Bowers
, “
Multimode physics in the mode locking of semiconductor quantum dot lasers
,”
Appl. Sci.
12
,
3504
(
2022
).
20.
J.
Faist
,
G.
Villares
,
G.
Scalari
,
M.
Rösch
,
C.
Bonzon
,
A.
Hugi
, and
M.
Beck
, “
Quantum cascade laser frequency combs
,”
Nanophotonics
5
,
272
291
(
2016
).
21.
P.
Bardella
,
L. L.
Columbo
, and
M.
Gioannini
, “
Self-generation of optical frequency comb in single section quantum dot fabry-perot lasers: A theoretical study
,”
Opt. Express
25
,
26234
26252
(
2017
).
22.
J.-Z.
Huang
,
Z.-T.
Ji
,
J.-J.
Chen
,
W.-Q.
Wei
,
J.-L.
Qin
,
Z.-H.
Wang
,
Z.-Y.
Li
,
T.
Wang
,
X.
Xiao
, and
J.-J.
Zhang
, “
Ultra-broadband flat-top quantum dot comb lasers
,”
Photonics Res.
10
,
1308
(
2022
).
23.
M.
Heydari
,
A. R.
Zali
,
R. E.
Gildeh
, and
A.
Farmani
, “
Fully integrated, 80 GHz bandwidth, 1.3 μm InAs/InGaAs CW-PW quantum dot passively colliding-pulse mode-locked (CPM) lasers for IR sensing application
,”
IEEE Sens. J.
22
,
6528
6535
(
2022
).
24.
S.
Bischoff
,
J.
Mørk
,
T.
Franck
,
S. D.
Brorson
,
M.
Hofmann
,
K.
Fröjdh
,
L.
Prip
, and
M. P.
Sørensen
, “
Monolithic colliding pulse mode-locked semiconductor lasers
,”
Quantum Semiclassical Opt.: J. Eur. Opt. Soc. Part B
9
,
655
(
1997
).
25.
G.
Kurczveil
,
A.
Descos
,
D.
Liang
,
M.
Fiorentino
, and
R.
Beausoleil
, “
Hybrid silicon quantum dot comb laser with record wide comb width
,” in
Frontiers in Optics/Laser Science
(
OSA
,
Washington, D.C
.,
2020
), p.
FTu6E.6
.
26.
G.
Kurczveil
,
D.
Liang
,
M.
Fiorentino
, and
R. G.
Beausoleil
, “
Robust hybrid quantum dot laser for integrated silicon photonics
,”
Opt. Express
24
,
16167
(
2016
).
27.
C.
Silvestri
,
X.
Qi
,
T.
Taimre
,
K.
Bertling
, and
A. D.
Rakić
, “
Frequency combs in quantum cascade lasers: An overview of modeling and experiments
,”
APL Photonics
8
,
020902
(
2023
).
28.
F.
Lelarge
,
B.
Rousseau
,
B.
Dagens
,
F.
Poingt
,
F.
Pommereau
, and
A.
Accard
, “
Room temperature continuous-wave operation of buried ridge stripe lasers using InAs-InP (100) quantum dots as active core
,”
IEEE Photonics Technol. Lett.
17
,
1369
1371
(
2005
).
29.
B.
Zhao
,
T. R.
Chen
,
S.
Wu
,
Y. H.
Zhuang
,
Y.
Yamada
, and
A.
Yariv
, “
Direct measurement of linewidth enhancement factors in quantum well lasers of different quantum well barrier heights
,”
Appl. Phys. Lett.
62
,
1591
(
1993
).
30.
H.
Huang
,
K.
Schires
,
P. J.
Poole
, and
F.
Grillot
, “
Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry-Perot laser
,”
Appl. Phys. Lett.
106
,
143501
(
2015
).
31.
C.
Silvestri
,
L. L.
Columbo
,
M.
Brambilla
, and
M.
Gioannini
, “
Coherent multi-mode dynamics in a quantum cascade laser: Amplitude- and frequency-modulated optical frequency combs
,”
Opt. Express
28
,
23846
23861
(
2020
).
32.
P.
Glas
,
M.
Naumann
,
A.
Schirrmacher
,
L.
Däweritz
, and
R.
Hey
, “
Self pulsing versus self locking in a CW pumped neodymium doped double clad fiber laser
,”
Opt. Commun.
161
,
345
358
(
1999
).
33.
C.
Silvestri
, “
Theory and modelization of quantum cascade laser dynamics: Comb formation, field structures and feedback-based imaging
,” Ph.D. thesis,
Politecnico di Torino
,
2022
.
34.
A. G.
Vladimirov
and
D.
Turaev
, “
Model for passive mode locking in semiconductor lasers
,”
Phys. Rev. A
72
,
033808
(
2005
).
35.
R.
Raghunathan
,
A.
de Pinho e Braga
,
M. T.
Crowley
,
J. K.
Mee
, and
L. F.
Lester
, “
Dynamics of split-pulsing in a two-section passively mode locked quantum dot laser
,” in
proceedings of CLEO
, San Jose, CA (
IEEE
,
2013
), pp.
1
2
.
You do not currently have access to this content.