Excess noise from scattered light poses a persistent challenge in the analysis of data from gravitational wave detectors such as Laser Interferometer Gravitational-wave Observatory. We integrate a physically motivated model for the behavior of these “glitches” into a standard Bayesian analysis pipeline used in gravitational wave science. This allows for the inference of the free parameters in this model, and subtraction of these models to produce glitch-free versions of the data. We show that this inference is an effective discriminator of the presence of the features of these glitches, even when those features may not be discernible in standard visualizations of the data.

1.
J.
Aasi
,
B.
Abbott
,
R.
Abbott
 et al.,
Classical Quantum Gravity
32
,
074001
(
2015
).
2.
F.
Acernese
,
M.
Agathos
,
K.
Agatsuma
 et al.,
Classical Quantum Gravity
32
,
024001
(
2015
).
3.
T.
Akutsu
,
M.
Ando
,
K.
Arai
 et al.,
Nat. Astron.
3
,
35
(
2019
).
4.
R.
Abbott
,
T.
Abbott
,
S.
Abraham
 et al.,
Phys. Rev. X
11
,
021053
(
2021
).
5.
R.
Abbott
,
T.
Abbott
,
F.
Acernese
 et al., arXiv:2111.03606 (
2021
).
6.
R.
Abbott
,
T.
Abbott
,
F.
Acernese
 et al., arXiv:2108.01045 (
2021
).
7.
A.
Buikema
,
C.
Cahillane
,
G.
Mansell
 et al.,
Phys. Rev. D
102
,
062003
(
2020
).
8.
B. P.
Abbott
,
R.
Abbott
,
T. D.
Abbott
 et al.,
Classical Quantum Gravity
33
,
134001
(
2016
).
9.
D.
Davis
,
J.
Areeda
,
B.
Berger
 et al.,
Classical Quantum Gravity
38
,
135014
(
2021
).
10.
F.
Acernese
,
M.
Agathos
,
A.
Ain
 et al., arXiv:2205.01555 (
2022
).
11.
P.
Nguyen
,
R.
Schofield
,
A.
Effler
 et al.,
Classical Quantum Gravity
38
,
145001
(
2021
).
12.
B. P.
Abbott
,
R.
Abbott
,
T.
Abbott
 et al.,
Classical Quantum Gravity
35
,
065010
(
2018
).
13.
A. H.
Nitz
,
Classical Quantum Gravity
35
,
035016
(
2018
).
14.
M.
Cabero
,
A.
Lundgren
,
A.
Nitz
 et al.,
Classical Quantum Gravity
36
,
15
(
2019
).
15.
D.
Davis
,
L. V.
White
, and
P. R.
Saulson
,
Classical Quantum Gravity
37
,
145001
(
2020
).
16.
G.
Ashton
,
S.
Thiele
,
Y.
Lecoeuche
,
J.
McIver
, and
L. K.
Nuttall
,
Classical Quantum Gravity
39
,
175004
(
2022
).
17.
C.
Pankow
,
K.
Chatziioannou
,
E.
Chase
 et al.,
Phys. Rev. D
98
,
084016
(
2018
), arXiv:1808.03619 [gr-qc].
18.
J.
Powell
,
Classical Quantum Gravity
35
,
155017
(
2018
).
19.
R.
Macas
,
J.
Pooley
,
L. K.
Nuttall
,
D.
Davis
,
M. J.
Dyer
,
Y.
Lecoeuche
,
J. D.
Lyman
,
J.
McIver
, and
K.
Rink
,
Phys. Rev. D
105
,
103021
(
2022
).
20.
J. Y. L.
Kwok
,
R. K. L.
Lo
,
A. J.
Weinstein
, and
T. G. F.
Li
,
Phys. Rev. D
105
,
024066
(
2022
).
21.
D.
Davis
,
T. B.
Littenberg
,
I. M.
Romero-Shaw
,
M.
Millhouse
,
J.
McIver
,
F.
Di Renzo
, and
G.
Ashton
,
Classical Quantum Gravity
39
,
245013
(
2022
).
22.
S.
Soni
,
C.
Austin
,
A.
Effler
 et al.,
Classical Quantum Gravity
38
,
025016
(
2021
).
23.
S.
Soni
,
C. P. L.
Berry
,
S. B.
Coughlin
 et al.,
Classical Quantum Gravity
38
,
195016
(
2021
), arXiv:2103.12104 [gr-qc].
24.
T.
Accadia
,
F.
Acernese
,
F.
Antonucci
 et al.,
Classical Quantum Gravity
27
,
194011
(
2010
).
25.
T.
Accadia
,
F.
Acernese
,
P.
Astone
 et al.,
Classical Quantum Gravity
29
,
025005
(
2012
), arXiv:1108.1598 [gr-qc].
26.
G.
Valdes
,
B.
O'Reilly
, and
M.
Diaz
,
Classical Quantum Gravity
34
,
235009
(
2017
).
27.
S.
Bianchi
,
A.
Longo
,
G.
Valdes
,
G.
González
, and
W.
Plastino
,
Classical Quantum Gravity
39
,
195005
(
2022
).
28.
A.
Longo
,
S.
Bianchi
,
G.
Valdes
,
N.
Arnaud
, and
W.
Plastino
,
Classical Quantum Gravity
39
,
035001
(
2022
).
29.
E.
Goetz
(
2021
), “gwdetchar/gwdetchar: 2.0.5,” Zenodo.
30.
N. J.
Cornish
and
T. B.
Littenberg
,
Classical Quantum Gravity
32
,
135012
(
2015
).
31.
N. J.
Cornish
,
T. B.
Littenberg
,
B.
Bécsy
,
K.
Chatziioannou
,
J. A.
Clark
,
S.
Ghonge
, and
M.
Millhouse
,
Phys. Rev. D
103
,
044006
(
2021
).
32.
S.
Hourihane
,
K.
Chatziioannou
,
M.
Wijngaarden
,
D.
Davis
,
T.
Littenberg
, and
N.
Cornish
,
Phys. Rev. D
106
,
042006
(
2022
).
33.
G.
Ashton
, arXiv:2209.15547 (
2022
).
34.
D.
Davis
,
T. J.
Massinger
,
A. P.
Lundgren
,
J. C.
Driggers
,
A. L.
Urban
, and
L. K.
Nuttall
,
Classical Quantum Gravity
36
,
055011
(
2019
).
35.
K.
Mogushi
, arXiv:2105.10522 (
2021
).
36.
A. E.
Tolley
,
G. S.
Cabourn Davies
,
I. W.
Harry
, and
A. P.
Lundgren
, arXiv:2301.10491 (
2023
).
37.
C.
Talbot
,
E.
Thrane
,
S.
Biscoveanu
, and
R.
Smith
,
Phys. Rev. Res.
3
,
043049
(
2021
).
38.
B. P.
Abbott
,
R.
Abbott
,
T.
Abbott
 et al.,
Classical Quantum Gravity
37
,
055002
(
2020
), arXiv:1908.11170 [gr-qc].
39.
G.
Ashton
,
M.
Huebner
,
P.
Lasky
 et al.,
Astrophys. J. Suppl.
241
,
27
(
2019
).
40.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
41.
J.
Skilling
,
Bayesian Anal.
1
,
833
(
2006
).
42.
J. S.
Speagle
,
Mon. Not. R. Astron. Soc.
493
,
3132
(
2020
).
43.
L.
Vazsonyi
and
D.
Davis
,
Classical Quantum Gravity
40
,
035008
(
2023
).
44.
P.
Ajith
,
M.
Hannam
,
S.
Husa
,
Y.
Chen
,
B.
Brügmann
,
N.
Dorband
,
D.
Müller
,
F.
Ohme
,
D.
Pollney
,
C.
Reisswig
,
L.
Santamaría
, and
J.
Seiler
,
Phys. Rev. Lett.
106
,
241101
(
2011
).
45.
L.
Santamaría
,
F.
Ohme
,
P.
Ajith
 et al.,
Phys. Rev. D
82
,
064016
(
2010
).
You do not currently have access to this content.