We present measurements of an optomechanical accelerometer for monitoring low-frequency noise in gravitational wave detectors, such as ground motion. Our device measures accelerations by tracking the test-mass motion of a 4.7 Hz mechanical resonator using a heterodyne interferometer. This resonator is etched from monolithic fused silica, an under-explored design in low-frequency sensors, allowing a device with a noise floor competitive with existing technologies but with a lighter and more compact form. In addition, our heterodyne interferometer is a compact optical assembly that can be integrated directly into the mechanical resonator wafer to further reduce the overall size of our accelerometer. We anticipate this accelerometer to perform competitively with commercial seismometers, and benchtop measurements show a noise floor reaching 82 pico-g Hz−1/2 sensitivities at 0.4 Hz. Furthermore, we present the effects of air pressure, laser fluctuations, and temperature to determine the stability requirements needed to achieve thermally limited measurements.

1.
J.
Aasi
,
B.
Abbott
,
R.
Abbott
,
T.
Abbott
,
M.
Abernathy
,
K.
Ackley
,
C.
Adams
,
T.
Adams
,
P.
Addesso
,
R.
Adhikari
 et al., “
Advanced LIGO
,”
Classical Quantum Gravity
32
,
074001
(
2015
).
2.
F. A.
Acernese
,
M.
Agathos
,
K.
Agatsuma
,
D.
Aisa
,
N.
Allemandou
,
A.
Allocca
,
J.
Amarni
,
P.
Astone
,
G.
Balestri
,
G.
Ballardin
 et al., “
Advanced Virgo: A second-generation interferometric gravitational wave detector
,”
Classical Quantum Gravity
32
,
024001
(
2014
).
3.
T.
Akutsu
,
M.
Ando
,
K.
Arai
 et al., “
KAGRA: 2.5 generation interferometric gravitational wave detector
,”
Nat. Astron.
3
,
35
40
(
2019
).
4.
P. R.
Saulson
, “
Thermal noise in mechanical experiments
,”
Phys. Rev. D
42
,
2437
2445
(
1990
).
5.
E. J.
Daw
,
J. A.
Giaime
,
D.
Lormand
,
M.
Lubinski
, and
J.
Zweizig
, “
Long-term study of the seismic environment at LIGO
,”
Classical Quantum Gravity
21
,
2255
2273
(
2004
).
6.
D. M.
Macleod
,
S.
Fairhurst
,
B.
Hughey
,
A. P.
Lundgren
,
L.
Pekowsky
,
J.
Rollins
, and
J. R.
Smith
, “
Reducing the effect of seismic noise in LIGO searches by targeted veto generation
,”
Classical Quantum Gravity
29
,
055006
(
2012
).
7.
B. P.
Abbott
,
R.
Abbott
,
T.
Abbott
,
M.
Abernathy
,
F.
Acernese
,
K.
Ackley
,
M.
Adamo
,
C.
Adams
,
T.
Adams
,
P.
Addesso
 et al., “
Characterization of transient noise in advanced LIGO relevant to gravitational wave signal GW150914
,”
Classical Quantum Gravity
33
,
134001
(
2016
).
8.
A.
Effler
,
R.
Schofield
,
V.
Frolov
,
G.
González
,
K.
Kawabe
,
J.
Smith
,
J.
Birch
, and
R.
McCarthy
, “
Environmental influences on the LIGO gravitational wave detectors during the 6th science run
,”
Classical Quantum Gravity
32
,
035017
(
2015
).
9.
P.
Nguyen
,
R.
Schofield
,
A.
Effler
,
C.
Austin
,
V.
Adya
,
M.
Ball
,
S.
Banagiri
,
K.
Banowetz
,
C.
Billman
,
C.
Blair
 et al., “
Environmental noise in advanced LIGO detectors
,”
Classical Quantum Gravity
38
,
145001
(
2021
).
10.
F.
Guzmán Cervantes
,
L.
Kumanchik
,
J.
Pratt
, and
J. M.
Taylor
, “
High sensitivity optomechanical reference accelerometer over 10 kHz
,”
Appl. Phys. Lett.
104
,
221111
(
2014
).
11.
A.
Hines
,
L.
Richardson
,
H.
Wisniewski
, and
F.
Guzman
, “
Optomechanical inertial sensors
,”
Appl. Opt.
59
,
G167
G174
(
2020
).
12.
A.
Hines
,
A.
Nelson
,
Y.
Zhang
,
G.
Valdes
,
J.
Sanjuan
,
J.
Stoddart
, and
F.
Guzmán
, “
Optomechanical accelerometers for geodesy
,”
Remote Sens.
14
,
4389
(
2022
).
13.
Y.
Zhang
and
F.
Guzman
, “
Quasi-monolithic heterodyne laser interferometer for inertial sensing
,”
Opt. Lett.
47
,
5120
5123
(
2022
).
14.
A.
Cumming
,
A.
Heptonstall
,
R.
Kumar
,
W.
Cunningham
,
C.
Torrie
,
M.
Barton
,
K.
Strain
,
J.
Hough
, and
S.
Rowan
, “
Finite element modelling of the mechanical loss of silica suspension fibres for advanced gravitational wave detectors
,”
Classical Quantum Gravity
26
,
215012
(
2009
).
15.
A.
Cumming
,
A.
Bell
,
L.
Barsotti
,
M.
Barton
,
G.
Cagnoli
,
D.
Cook
,
L.
Cunningham
,
M.
Evans
,
G.
Hammond
,
G.
Harry
 et al., “
Design and development of the advanced LIGO monolithic fused silica suspension
,”
Classical Quantum Gravity
29
,
035003
(
2012
).
16.
K.
Numata
,
S.
Otsuka
,
M.
Ando
, and
K.
Tsubono
, “
Intrinsic losses in various kinds of fused silica
,”
Classical Quantum Gravity
19
,
1697
1702
(
2002
).
17.
F.
Matichard
,
B.
Lantz
,
R.
Mittleman
,
K.
Mason
,
J.
Kissel
,
B.
Abbott
,
S.
Biscans
,
J.
McIver
,
R.
Abbott
,
S.
Abbott
 et al., “
Seismic isolation of advanced LIGO: Review of strategy, instrumentation and performance
,”
Classical Quantum Gravity
32
,
185003
(
2015
).
18.
Y.
Zhang
,
A. S.
Hines
,
G.
Valdes
, and
F.
Guzman
, “
Investigation and mitigation of noise contributions in a compact heterodyne interferometer
,”
Sensors
21
,
5788
(
2021
).
19.
R. X.
Adhikari
,
K.
Arai
,
A.
Brooks
,
C.
Wipf
,
O.
Aguiar
,
P.
Altin
,
B.
Barr
,
L.
Barsotti
,
R.
Bassiri
,
A.
Bell
 et al., “
A cryogenic silicon interferometer for gravitational-wave detection
,”
Classical Quantum Gravity
37
,
165003
(
2020
).
20.
M.
Punturo
,
M.
Abernathy
,
F.
Acernese
,
B.
Allen
,
N.
Andersson
,
K.
Arun
,
F.
Barone
,
B.
Barr
,
M.
Barsuglia
,
M.
Beker
 et al., “The Einstein Telescope: a third-generation gravitational wave observatory,”
Classical Quantum Gravity
27
,
194002
(
2010
).
21.
A.
Schroeter
,
R.
Nawrodt
,
R.
Schnabel
,
S.
Reid
,
I.
Martin
,
S.
Rowan
,
C.
Schwarz
,
T.
Koettig
,
R.
Neubert
,
M.
Thürk
 et al., “
On the mechanical quality factors of cryogenic test masses from fused silica and crystalline quartz
,” arXiv:0709.4359 (
2007
).
You do not currently have access to this content.