In this Letter, a snap-through energy harvester is proposed to break through the energy output bottleneck of ultra-low-frequency (<1 Hz) rotational energy harvesting. On one hand, a buckled mechanism provides large-amplitude snap-through motion that enhances the output power. On the other hand, the hierarchical auxetic structures enable the simultaneous operation of d31 and d32 modes of piezoelectric buzzers and boosts the energy harvested. Moreover, both the buckled mechanism and auxetic structures can reduce the fundamental natural frequency of the total system. A finite element model is established to predict the harvester performances, which are validated via experiments. Experimental results show that the integration of the buckled mechanism and auxetic structures can improve the output power by 3224.75% at 0.5 Hz. Specifically, the proposed harvester can achieve an output power of 146.2 μW and a normalized power density of 1.392 μW/mm3Hz2 at 0.5 Hz, which are superior to other state-of-the-art rotational piezoelectric energy harvesters. Therefore, the proposed harvester can provide sufficient energy for low-power sensors at ultra-low rotational frequencies and has a great application potential in the structural health monitoring of wind turbine blades.

1.
P.
Schubel
,
R.
Crossley
,
E.
Boateng
, and
J.
Hutchinson
, “
Review of structural health and cure monitoring techniques for large wind turbine blades
,”
Renewable Energy
51
,
113
123
(
2013
).
2.
J.
Oudenhoven
,
R.
Vullers
, and
R.
Van Schaijk
, “
A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems
,”
Int. J. Energy Res.
36
,
1139
1150
(
2012
).
3.
L.
Zhao
,
H.
Zou
,
Q.
Gao
,
G.
Yan
,
F.
Liu
,
T.
Tan
,
K.
Wei
, and
W.
Zhang
, “
Magnetically modulated orbit for human motion energy harvesting
,”
Appl. Phys. Lett.
115
,
263902
(
2019
).
4.
N.
Yu
,
X.
Fei
,
C.
Wu
, and
B.
Yan
, “
Modeling and analysis of magnetic spring enhanced lever-type electromagnetic energy harvesters
,”
Appl. Math. Mech.
43
,
743
760
(
2022
).
5.
Y.
Zhang
,
A.
Luo
,
Y.
Wang
,
X.
Dai
,
Y.
Lu
, and
F.
Wang
, “
Rotational electromagnetic energy harvester for human motion application at low frequency
,”
Appl. Phys. Lett.
116
,
053902
(
2020
).
6.
J.
Gravesen
,
M.
Willatzen
,
J.
Shao
, and
Z. L.
Wang
, “
Modeling and optimization of a rotational symmetric spherical triboelectric generator
,”
Nano Energy
100
,
107491
(
2022
).
7.
D.
Tan
,
J.
Zhou
,
K.
Wang
,
C.
Zhang
, and
D.
Xu
, “
Design and theoretical investigation of a torsional bistable triboelectric nanogenerator
,”
Int. J. Mech. Sci.
236
,
107760
(
2022
).
8.
S.
Fang
,
K.
Chen
,
Z.
Lai
,
S.
Zhou
, and
W.-H.
Liao
, “
Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations
,”
Appl. Energy
331
,
120355
(
2023
).
9.
S.
Li
,
X.
He
,
J.
Li
,
Z.
Feng
,
X.
Yang
, and
J.
Li
, “
An in-plane omnidirectional piezoelectric wind energy harvester based on vortex-induced vibration
,”
Appl. Phys. Lett.
120
,
043901
(
2022
).
10.
Z.
Lu
,
F.
Zhang
,
H.
Fu
,
H.
Ding
, and
L.
Chen
, “
Rotational nonlinear double-beam energy harvesting
,”
Smart Mater. Struct.
31
,
025020
(
2022
).
11.
H.
Fu
,
X.
Mei
,
D.
Yurchenko
,
S.
Zhou
,
S.
Theodossiades
,
K.
Nakano
, and
E. M.
Yeatman
, “
Rotational energy harvesting for self-powered sensing
,”
Joule
5
,
1074
1118
(
2021
).
12.
J.
Wang
,
S.
Zhou
,
Z.
Zhang
, and
D.
Yurchenko
, “
High-performance piezoelectric wind energy harvester with Y-shaped attachments
,”
Energy Convers. Manage.
181
,
645
652
(
2019
).
13.
Y.
Zhang
,
W.
Wang
,
J.
Xie
,
Y.
Lei
,
J.
Cao
,
Y.
Xu
,
S.
Bader
,
C.
Bowen
, and
B.
Oelmann
, “
Enhanced variable reluctance energy harvesting for self-powered monitoring
,”
Appl. Energy
321
,
119402
(
2022
).
14.
K.
Yang
,
A.
Abdelkefi
,
X.
Li
,
Y.
Mao
,
L.
Dai
, and
J.
Wang
, “
Stochastic analysis of a galloping-random wind energy harvesting performance on a buoy platform
,”
Energy Convers. Manage.
238
,
114174
(
2021
).
15.
G.
Hu
,
J.
Wang
, and
L.
Tang
, “
A comb-like beam based piezoelectric system for galloping energy harvesting
,”
Mech. Syst. Signal Process.
150
,
107301
(
2021
).
16.
H.-J.
Wagner
, “
Introduction to wind energy systems
,” in
EPJ Web of Conferences
(
EDP Sciences
,
2020
), Vol.
246
, p.
00004
.
17.
B.
Yang
and
D.
Sun
, “
Testing, inspecting and monitoring technologies for wind turbine blades: A survey
,”
Renewable Sustainable Energy Rev.
22
,
515
526
(
2013
).
18.
L.
Tang
,
Y.
Yang
, and
C. K.
Soh
, “
Toward broadband vibration-based energy harvesting
,”
J. Intell. Mater. Syst. Struct.
21
,
1867
1897
(
2010
).
19.
M. M.
Ahmad
,
N. M.
Khan
, and
F. U.
Khan
, “
Review of frequency up-conversion vibration energy harvesters using impact and plucking mechanism
,”
Int. J. Energy Res.
45
,
15609
15645
(
2021
).
20.
K.
Fan
,
C.
Wang
,
C.
Chen
,
Y.
Zhang
,
P.
Wang
, and
F.
Wang
, “
A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy
,”
Renewable Energy
179
,
339
350
(
2021
).
21.
M.
Cai
and
W.-H.
Liao
, “
Enhanced electromagnetic wrist-worn energy harvester using repulsive magnetic spring
,”
Mech. Syst. Signal Process.
150
,
107251
(
2021
).
22.
C.
Hou
,
T.
Chen
,
Y.
Li
,
M.
Huang
,
Q.
Shi
,
H.
Liu
,
L.
Sun
, and
C.
Lee
, “
A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications
,”
Nano Energy
63
,
103871
(
2019
).
23.
K.
Fan
,
J.
Chang
,
W.
Pedrycz
,
Z.
Liu
, and
Y.
Zhu
, “
A nonlinear piezoelectric energy harvester for various mechanical motions
,”
Appl. Phys. Lett.
106
,
223902
(
2015
).
24.
H.
Zou
,
L.
Zhao
,
Q.
Gao
,
L.
Zuo
,
F.
Liu
,
T.
Tan
,
K.
Wei
, and
W.
Zhang
, “
Mechanical modulations for enhancing energy harvesting: Principles, methods and applications
,”
Appl. Energy
255
,
113871
(
2019
).
25.
J.
Wang
,
L.
Geng
,
S.
Zhou
,
Z.
Zhang
,
Z.
Lai
, and
D.
Yurchenko
, “
Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
,”
Acta Mech. Sin.
36
,
592
605
(
2020
).
26.
H.
Fu
and
E. M.
Yeatman
, “
Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: Theoretical modelling and experimental validation
,”
Mech. Syst. Signal Process.
125
,
229
244
(
2019
).
27.
H.
Liu
,
W.
Dong
,
X.
Sun
,
S.
Wang
, and
W.
Li
, “
Performance of Fe–Ga alloy rotational vibration energy harvester with centrifugal softening
,”
Smart Mater. Struct.
31
,
065008
(
2022
).
28.
S.
Fang
,
S.
Wang
,
S.
Zhou
,
Z.
Yang
, and
W.-H.
Liao
, “
Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting
,”
J. Sound Vib.
488
,
115643
(
2020
).
29.
Y.
Zhang
,
R.
Zheng
,
K.
Nakano
, and
M. P.
Cartmell
, “
Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting
,”
Appl. Phys. Lett.
112
,
143901
(
2018
).
30.
D.
Huang
,
J.
Han
,
S.
Zhou
,
Q.
Han
,
G.
Yang
, and
D.
Yurchenko
, “
Stochastic and deterministic responses of an asymmetric quad-stable energy harvester
,”
Mech. Syst. Signal Process.
168
,
108672
(
2022
).
31.
S.
Fang
,
S.
Zhou
,
D.
Yurchenko
,
T.
Yang
, and
W.-H.
Liao
, “
Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review
,”
Mech. Syst. Signal Process.
166
,
108419
(
2022
).
32.
X.
Mei
,
R.
Zhou
,
S.
Fang
,
S.
Zhou
,
B.
Yang
, and
K.
Nakano
, “
Theoretical modeling and experimental validation of the centrifugal softening effect for high-efficiency energy harvesting in ultralow-frequency rotational motion
,”
Mech. Syst. Signal Process.
152
,
107424
(
2021
).
33.
H.
Zou
,
W.
Zhang
,
W.
Li
,
K.
Wei
,
Q.
Gao
,
Z.
Peng
, and
G.
Meng
, “
Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion
,”
Energy Convers. Manage.
148
,
1391
1398
(
2017
).
34.
K.
Chen
,
X.
Ding
,
L.
Tian
,
H.
Shen
,
R.
Song
,
Y.
Bian
, and
Q.
Yang
, “
An M-shaped buckled beam for enhancing nonlinear energy harvesting
,”
Mech. Syst. Signal Process.
188
,
110066
(
2023
).
35.
Z.
Xie
,
C.
Kitio Kwuimy
,
Z.
Wang
, and
W.
Huang
, “
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
,”
AIP Adv.
8
,
015125
(
2018
).
36.
B.
Yang
,
Z.
Yi
,
G.
Tang
, and
J.
Liu
, “
A gullwing-structured piezoelectric rotational energy harvester for low frequency energy scavenging
,”
Appl. Phys. Lett.
115
,
063901
(
2019
).
37.
H.
Zhang
,
P.
Wen
,
P.
Li
,
Z.
Wang
,
S.
Wang
,
X.
Zhao
,
Y.
Xiao
,
J.
Shen
,
D.
He
, and
W.
Chen
, “
Enhanced output performance of flexible piezoelectric energy harvester by using auxetic graphene films as electrodes
,”
Appl. Phys. Lett.
117
,
103901
(
2020
).
38.
K.
Chen
,
S.
Fang
,
Q.
Gao
,
D.
Zou
,
J.
Cao
, and
W.-H.
Liao
, “
Enhancing power output of piezoelectric energy harvesting by gradient auxetic structures
,”
Appl. Phys. Lett.
120
,
103901
(
2022
).
39.
G. M.
Odegard
, “
Constitutive modeling of piezoelectric polymer composites
,”
Acta Mater.
52
,
5315
5330
(
2004
).
40.
J.-C.
Hsu
,
C.-T.
Tseng
, and
Y.-S.
Chen
, “
Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion
,”
Smart Mater. Struct.
23
,
075013
(
2014
).
41.
E.
Madi
,
K.
Pope
,
W.
Huang
, and
T.
Iqbal
, “
A review of integrating ice detection and mitigation for wind turbine blades
,”
Renewable Sustainable Energy Rev.
103
,
269
281
(
2019
).
42.
M. C.
Homola
,
P. J.
Nicklasson
, and
P. A.
Sundsbø
, “
Ice sensors for wind turbines
,”
Cold Regions Sci. Technol.
46
,
125
131
(
2006
).
43.
M.
Guan
and
W.-H.
Liao
, “
Design and analysis of a piezoelectric energy harvester for rotational motion system
,”
Energy Convers. Manage.
111
,
239
244
(
2016
).
44.
M.
Cai
,
J.
Wang
, and
W.-H.
Liao
, “
Self-powered smart watch and wristband enabled by embedded generator
,”
Appl. Energy
263
,
114682
(
2020
).
45.
Y.
Yang
,
Q.
Shen
,
J.
Jin
,
Y.
Wang
,
W.
Qian
, and
D.
Yuan
, “
Rotational piezoelectric wind energy harvesting using impact-induced resonance
,”
Appl. Phys. Lett.
105
,
053901
(
2014
).
46.
J. M.
Ramírez
,
C. D.
Gatti
,
S. P.
Machado
, and
M.
Febbo
, “
Energy harvesting for autonomous thermal sensing using a linked E-shape multi-beam piezoelectric device in a low frequency rotational motion
,”
Mech. Syst. Signal Process.
133
,
106267
(
2019
).
47.
X.
Tang
,
X.
Wang
,
R.
Cattley
,
F.
Gu
, and
A. D.
Ball
, “
Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: A review
,”
Sensors
18
,
4113
(
2018
).
You do not currently have access to this content.