A fan-out circuit is a basic block for scaling up digital circuits for overcoming the limited driving capability of a single logic gate. It is particularly important for superconducting digital circuits as the driving power is typically weak for having high energy efficiency. Here, we design and fabricate a fan-out circuit for a superconducting nanowire cryotron (nTron) digital circuit. A classic splitter tree architecture is adopted. To transmit switching signal and avoid crosstalk among nTrons, we introduced an “R–L–R” interface circuit. Experimentally, a two-stage splitter tree of a fan-out number of four was demonstrated. Correct operation was observed with a minimum bit error rate (BER) of 10−6. The bias margin was 10% at BER of 10−4. The average time jitter was 82 ps. Moreover, crosstalk was not observed. Based on these results, we envision that the fan-out circuit can be used in future development of superconducting-nanowire-based circuits.

1.
A. N.
McCaughan
and
K. K.
Berggren
,
Nano Lett.
14
,
5748
(
2014
).
2.
J. M.
Shainline
,
S. M.
Buckley
,
R. P.
Mirin
, and
S. W.
Nam
, in
IEEE International Conference on Rebooting Computing (ICRC)
(
IEEE
,
2016
).
3.
J. M.
Shainline
,
S. M.
Buckley
,
R. P.
Mirin
, and
S. W.
Nam
,
Phys. Rev. Appl.
7
,
034013
(
2017
).
4.
S.
Buckley
,
A. N.
McCaughan
,
J.
Chiles
,
R. P.
Mirin
,
S. W.
Nam
,
J. M.
Shainline
,
G.
Bruer
,
J. S.
Plank
, and
C. D.
Schuman
, in
IEEE International Conference on Rebooting Computing (ICRC)
(
IEEE
,
2019
), Vol.
1
.
5.
K.
Zheng
,
Q. Y.
Zhao
,
L. D.
Kong
,
S.
Chen
,
H. Y. B.
Lu
,
X. C.
Tu
,
L. B.
Zhang
,
X. Q.
Jia
,
J.
Chen
,
L.
Kang
, and
P. H.
Wu
,
Sci. Rep.
9
,
16345
(
2019
).
6.
K.
Zheng
,
Q.-Y.
Zhao
,
H.-Y.-B.
Lu
,
L.-D.
Kong
,
S.
Chen
,
H.
Hao
,
H.
Wang
,
D.-F.
Pan
,
X.-C.
Tu
,
L.-B.
Zhang
,
X.-Q.
Jia
,
J.
Chen
,
L.
Kang
, and
P.-H.
Wu
,
Nano Lett.
20
,
3553
(
2020
).
7.
M. H.
Nguyen
,
G. J.
Ribeill
,
M. V.
Gustafsson
,
S.
Shi
,
S. V.
Aradhya
,
A. P.
Wagner
,
L. M.
Ranzani
,
L.
Zhu
,
R.
Baghdadi
,
B.
Butters
,
E.
Toomey
,
M.
Colangelo
,
P. A.
Truitt
,
A.
Jafari-Salim
,
D.
McAllister
,
D.
Yohannes
,
S. R.
Cheng
,
R.
Lazarus
,
O.
Mukhanov
,
K. K.
Berggren
,
R. A.
Buhrman
,
G. E.
Rowlands
, and
T. A.
Ohki
,
Sci. Rep.
10
,
248
(
2020
).
8.
K.
Sano
,
M.
Suzuki
,
K.
Maruyama
,
S.
Taniguchi
,
M.
Tanaka
,
A.
Fujimaki
,
M.
Inoue
, and
N.
Yoshikawa
,
IEICE Trans. Electron.
E101C
,
370
(
2018
).
9.
Q. Y.
Zhao
,
A. N.
McCaughan
,
A. E.
Dane
,
K. K.
Berggren
, and
T.
Ortlepp
,
Supercond. Sci. Technol.
30
,
044002
(
2017
).
10.
Q. Y.
Zhao
,
E. A.
Toomey
,
B. A.
Butters
,
A. N.
McCaughan
,
A. E.
Dane
,
S. W.
Nam
, and
K. K.
Berggren
,
Supercond. Sci. Technol.
31
,
035009
(
2018
).
11.
A. N.
McCaughan
,
N. S.
Abebe
,
Q. Y.
Zhao
, and
K. K.
Berggren
,
Nano Lett.
16
,
7626
(
2016
).
12.
A. N.
McCaughan
,
V. B.
Verma
,
S. M.
Buckley
,
J. P.
Allmaras
,
A. G.
Kozorezov
,
A. N.
Tait
,
S. W.
Nam
, and
J. M.
Shainline
,
Nat. Electron.
2
,
451
(
2019
).
13.
R.
Baghdadi
,
J. P.
Allmaras
,
B. A.
Butters
,
A. E.
Dane
,
S.
Iqbal
,
A. N.
McCaughan
,
E. A.
Toomey
,
Q. Y.
Zhao
,
A. G.
Kozorezov
, and
K. K.
Berggren
,
Phys. Rev. Appl.
14
,
054011
(
2020
).
14.
N.
Katam
,
A.
Shafaei
, and
M.
Pedram
, in
Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC)
(
IEEE
,
2017
), p.
384
.
15.
J.
Volk
,
G.
Tzimpragos
,
A.
Wynn
,
E.
Golden
, and
T.
Sherwood
, in
48th Annual International Symposium on Computer Architecture (ISCA)
(
IEEE
,
2022
).
16.
S.
Omranpour
and
S. A.
Hashemi
,
Int. J. Circuit Theory Appl.
50
,
3086
(
2022
).
17.
A.
Lombo
,
J.
Lares
,
M.
Castellani
,
C.-N.
Chou
,
N.
Lynch
, and
K. K.
Berggren
,
Neuromorph. Comput. Eng.
2
,
034011
(
2022
).
18.
M. L.
Schneider
and
K.
Segall
,
J. Appl. Phys.
128
,
214903
(
2020
).
19.
B. A.
Primavera
and
J. M.
Shainline
,
Appl. Phys. Lett.
119
,
242601
(
2021
).
20.
J. M.
Shainline
,
S. M.
Buckley
,
A. N.
McCaughan
,
J.
Chiles
,
A.
Jafari-Salim
,
R. P.
Mirin
, and
S. W.
Nam
,
J. Appl. Phys.
124
,
152130
(
2018
).
21.
A. J.
Kerman
,
J. K. W.
Yang
,
R. J.
Molnar
,
E. A.
Dauler
, and
K. K.
Berggren
,
Phys. Rev. B.
79
,
100509(R)
(
2009
).
22.
A. J.
Annunziata
,
O.
Quaranta
,
D. F.
Santavicca
,
A.
Casaburi
,
L.
Frunzio
,
M.
Ejrnaes
,
M. J.
Rooks
,
R.
Cristiano
,
S.
Pagano
,
A.
Frydman
, and
D. E.
Prober
,
J. Appl. Phys.
108
,
084507
(
2010
).
23.
K. K.
Berggren
,
Q. Y.
Zhao
,
N.
Abebe
,
M.
Chen
,
P.
Ravindran
,
A.
McCaughan
, and
J. C.
Bardin
,
Supercond. Sci. Technol.
31
,
055010
(
2018
).
24.
T.
Jabbari
,
G.
Krylov
,
J.
Kawa
, and
E. G.
Friedman
,
IEEE Trans. Appl. Supercond.
31
,
1302606
(
2021
).

Supplementary Material

You do not currently have access to this content.