We report on the design and operation of a laser, which outputs wavelengths in the 1.2 and 1.5 μm ranges by leveraging two non-linear processes of stimulated Raman scattering and stimulated Brillouin scattering in diamond. By precisely controlling characteristics of the laser resonator formed around the diamond crystal, we are able to selectively control the onset of each non-linear process so as to tailor laser output characteristics both in way of wavelength and output power. This work demonstrates the high degree of flexibility and power-handling capacity of diamond for wavelength conversion of common laser wavelengths (such as 1064 nm as used in this work) and the generation of a span of discrete wavelengths (with up to eight cascaded orders being demonstrated in this work).

1.
C.
Guo
,
K.
Che
,
Z.
Cai
,
S.
Liu
,
G.
Gu
,
C.
Chu
,
P.
Zhang
,
H.
Fu
,
Z.
Luo
, and
H.
Xu
, “
Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation
,”
Opt. Lett.
40
(
21
),
4971
(
2015
).
2.
Z.
Bai
,
H.
Yuan
,
Z.
Liu
,
P.
Xu
,
Q.
Gao
,
R. J.
Williams
,
O.
Kitzler
,
R. P.
Mildren
,
Y.
Wang
, and
Z.
Lu
, “
Stimulated Brillouin scattering materials, experimental design and applications: A review
,”
Opt. Mater.
75
,
626
645
(
2018
).
3.
A.
Debut
,
S.
Randoux
, and
J.
Zemmouri
, “
Linewidth narrowing in Brillouin lasers: Theoretical analysis
,”
Phys. Rev. A
62
(
2
),
023803
(
2000
).
4.
M. R.
Shirazi
,
N. S.
Shahabuddin
,
S. N.
Aziz
,
K.
Thambiratnam
,
S. W.
Harun
, and
H.
Ahmad
, “
A linear cavity Brillouin fiber laser with multiple wavelengths output
,”
Laser Phys. Lett.
5
(
5
),
361
363
(
2008
).
5.
B. J.
Eggleton
,
C. G.
Poulton
,
P. T.
Rakich
,
M. J.
Steel
, and
G.
Bahl
, “
Brillouin integrated photonics
,”
Nat. Photonics
13
(
10
),
664
677
(
2019
).
6.
D.
Marpaung
,
B.
Morrison
,
M.
Pagani
,
R.
Pant
,
D.-Y.
Choi
,
B.
Luther-Davies
,
S. J.
Madden
, and
B. J.
Eggleton
, “
Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity
,”
Optica
2
,
76
83
(
2015
).
7.
X.
Wang
,
Y.
Yang
,
M.
Liu
,
Y.
Yuan
,
Y.
Sun
,
Y.
Gu
, and
Y.
Yao
, “
Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers
,”
Appl. Opt.
55
(
23
),
6475
(
2016
).
8.
Y.
Liu
,
Y.
Shang
,
X.
Yi
,
R.
Guo
, and
Y.
Zheng
, “
Triple Brillouin frequency spacing Brillouin fiber laser sensor for temperature measurement
,”
Opt. Fiber Technol.
54
,
102106
(
2020
).
9.
K.
Hu
,
I. V.
Kabakova
,
T. F.
Büttner
,
S.
Lefrancois
,
D. D.
Hudson
,
S.
He
, and
B. J.
Eggleton
, “
Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber
,”
Opt. Lett.
39
,
4651
4654
(
2014
).
10.
R.
Pant
,
E.
Li
,
D.-Y.
Choi
,
C. G.
Poulton
,
S. J.
Madden
,
B.
Luther-Davies
, and
B. J.
Eggleton
, “
Cavity enhanced stimulated Brillouin scattering in an optical chip for multi order Stokes generation
,”
Opt. Lett.
36
(
18
),
3687
(
2011
).
11.
R.
Pant
,
C. G.
Poulton
,
D.-Y.
Choi
,
H.
Mcfarlane
,
S.
Hile
,
E.
Li
,
L.
Thevenaz
,
B.
Luther-Davies
,
S. J.
Madden
, and
B. J.
Eggleton
, “
On-chip stimulated Brillouin scattering
,”
Opt. Express
19
(
9
),
8285
8290
(
2011
).
12.
R.
Pant
,
D.
Marpaung
,
I. V.
Kabakova
,
B.
Morrison
,
C. G.
Poulton
, and
B. J.
Eggleton
, “
On-chip stimulated Brillouin scattering for microwave signal processing and generation: On-chip stimulated Brillouin scattering
,”
Laser Photonics Rev.
8
(
5
),
653
666
(
2014
).
13.
N. T.
Otterstrom
,
R. O.
Behunin
,
E. A.
Kittlaus
,
Z.
Wang
, and
P. T.
Rakich
, “
A silicon Brillouin laser
,”
Science
360
(
6393
),
1113
1116
(
2018
).
14.
M. N. M.
Nasir
,
Z.
Yusoff
,
M. H.
Al-Mansoori
,
H. A. A.
Rashid
, and
P. K.
Choudhury
, “
Low threshold and efficient multi-wavelength Brillouin erbium fiber laser incorporating a fiber Bragg grating filter with intra-cavity pre-amplified Brillouin pump
,”
Laser Phys. Lett.
6
(
1
),
54
58
(
2009
).
15.
Q.
Li
,
Z.
Jia
,
H.
Weng
,
Y.
Yang
,
J.
Xiao
,
S.
Chen
,
Y.
Huang
,
W.
Qin
, and
G.
Qin
, “
Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity
,”
Laser Phys. Lett.
15
(
5
),
055103
(
2018
).
16.
I. S.
Grudinin
,
A. B.
Matsko
, and
L.
Maleki
, “
Brillouin lasing with a CaF2 whispering gallery mode resonator
,”
Phys. Rev. Lett.
102
(
4
),
043902
(
2009
).
17.
Y.
Li
,
Z.
Bai
,
H.
Chen
,
D.
Jin
,
X.
Yang
,
Y.
Qi
,
J.
Ding
,
Y.
Wang
, and
Z.
Lu
, “
Eye-safe diamond Raman laser
,”
Results Phys.
16
,
102853
(
2020
).
18.
H.
Larsson
,
O.
Steinvall
,
T.
Chevalier
, and
F.
Gustafsson
, “
Characterizing laser radar snow reflection for the wavelengths 0.9 and 1.5 μm
,”
Opt. Eng.
45
(
11
),
116201
(
2006
).
19.
T. J.
Carrig
, “
Novel pulsed solid state sources for laser remote sensing
,”
Proc. SPIE
5620
,
187
198
(
2004
).
20.
G. D.
Valle
,
S.
Taccheo
,
R.
Osellame
,
A.
Festa
,
G.
Cerullo
, and
P.
Laporta
, “
1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing
,”
Opt. Express
15
(
6
),
3190
3194
(
2007
).
21.
R.
Osellame
,
S.
Taccheo
,
M.
Marangoni
,
R.
Ramponi
,
P.
Laporta
,
D.
Polli
,
S. D.
Silvestri
, and
G.
Cerullo
, “
Femtosecond writing of active optical waveguides with astigmatically shaped beams
,”
J. Opt. Soc. Am. B
20
(
7
),
1559
1567
(
2003
).
22.
L.
Fornasiero
,
K.
Petermann
,
E.
Heumann
, and
G.
Huber
, “
Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 μm
,”
Opt. Mater.
10
(
1
),
9
17
(
1998
).
23.
S. D.
Setzler
,
M. P.
Francis
,
Y. E.
Young
,
J. R.
Konves
, and
E. P.
Chicklis
, “
Resonantly pumped eyesafe erbium lasers
,”
IEEE J. Sel. Top. Quantum Electron.
11
(
3
),
645
657
(
2005
).
24.
R. P.
Mildren
,
R. P.
Mildren
, and
J. R.
Rabeau
, “
Intrinsic optical properties of diamond
,” in
Optical Engineering of Diamond
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2013
), pp.
1
34
.
25.
R. J.
Williams
,
J.
Nold
,
M.
Strecker
,
O.
Kitzler
,
A.
McKay
,
T.
Schreiber
, and
R. P.
Mildren
, “
Efficient Raman frequency conversion of high‐power fiber lasers in diamond
,”
Laser Photonics Rev.
9
(
4
),
405
411
(
2015
).
26.
R. J.
Williams
,
Z.
Bai
,
S.
Sarang
,
O.
Kitzler
,
D. J.
Spence
, and
R. P.
Mildren
, “
Diamond Brillouin lasers
,” arXiv:1807.00240 (
2018
).
27.
Z.
Bai
,
R. J.
Williams
,
O.
Kitzler
,
S.
Sarang
,
D. J.
Spence
,
Y.
Wang
,
Z.
Lu
, and
R. P.
Mildren
, “
Diamond Brillouin laser in the visible
,”
APL Photonics
5
(
3
),
031301
(
2020
).
28.
D.
Jin
,
Z.
Bai
,
Z.
Lu
 et al, “
22.5 W narrow linewidth diamond Brillouin laser at 1064 nm
,”
Opt. Lett.
47
(
20
),
5360
5363
(
2022
).
29.
I.
Friel
,
S. L.
Geoghegan
,
D. J.
Twitchen
, and
G. A.
Scarsbrook
, “
Development of high quality single crystal diamond for novel laser applications
,”
Proc. SPIE
7838
,
783819
(
2010
).
30.
R. S.
Balmer
,
J. R.
Brandon
,
S. L.
Clewes
,
H. K.
Dhillon
,
J. M.
Dodson
,
I.
Friel
,
P. N.
Inglis
,
T. D.
Madgwick
,
M. L.
Markham
,
T. P.
Mollart
,
N.
Perkins
,
G. A.
Scarsbrook
,
D. J.
Twitchen
,
A. J.
Whitehead
,
J. J.
Wilman
, and
S. M.
Woollard
, “
Chemical vapour deposition synthetic diamond: Materials, technology and applications
,”
J. Phys.: Condens. Matter
21
(
36
),
364221
(
2009
).
31.
Z.
Bai
,
R. J.
Williams
,
O.
Kitzler
,
S.
Sarang
,
D. J.
Spence
, and
R. P.
Mildren
, “
302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement
,”
Opt. Express
26
(
16
),
19797
(
2018
).
32.
Z.
Bai
,
R. J.
Williams
,
H.
Jasbeer
,
S.
Sarang
,
O.
Kitzler
,
A.
Mckay
, and
R. P.
Mildren
, “
Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion
,”
Opt. Lett.
43
(
3
),
563
566
(
2018
).
33.
J. T.
Murray
,
W. L.
Austin
, and
R. C.
Powell
, “
Intracavity Raman conversion and Raman beam cleanup
,”
Opt. Mater.
11
(
4
),
353
371
(
1999
).
34.
S.
Ma
,
H.
Tu
,
D.
Lu
,
Z.
Hu
,
N.
Jiang
,
X.
Wang
, and
J.
Wang
, “
Efficient Raman red laser with second-order Stokes effect of diamond crystal
,”
Opt. Commun.
478
,
126399
(
2021
).
35.
X.
Yang
,
O.
Kitzler
,
D. J.
Spence
,
R. J.
Williams
,
Z.
Bai
,
S.
Sarang
,
L.
Zhang
,
Y.
Feng
, and
R. P.
Mildren
, “
Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain
,”
Opt. Lett.
44
,
839
842
(
2019
).
36.
Y.
Sun
,
M.
Li
,
R. P.
Mildren
,
Z.
Bai
,
H.
Zhang
,
J.
Lu
,
Y.
Feng
, and
X.
Yang
, “
High-power continuous-wave single-frequency diamond Raman laser at 1178 nm
,”
Appl. Phys. Lett.
121
,
141104
(
2022
).
37.
H.
Chen
,
Z.
Bai
,
X.
Yang
,
J.
Ding
,
Y.
Qi
,
B.
Yan
,
Y.
Wang
,
Z.
Lu
, and
R. P.
Mildren
, “
Enhanced stimulated Brillouin scattering utilizing Raman conversion in diamond
,”
Appl. Phys. Lett.
120
(
18
),
181103
(
2022
).
38.
R. J.
Williams
,
O.
Kitzler
,
A.
McKay
, and
R. P.
Mildren
, “
Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping
,”
Opt. Lett.
39
(
14
),
4152
(
2014
).
39.
Z.
Bai
,
Z.
Zhang
,
K.
Wang
,
J.
Gao
,
Z.
Zhang
,
X.
Yang
,
Y.
Wang
,
Z.
Lu
, and
R. P.
Mildren
, “
Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method
,”
Nanomaterials
11
(
6
),
1572
(
2021
).
40.
J.
Ding
,
Y.
Li
,
H.
Chen
,
Y.
Cai
,
Z.
Bai
,
Y.
Qi
,
B.
Yan
,
Y.
Wang
, and
Z.
Lu
, “
Thermal modeling of an external cavity diamond Raman laser
,”
Opt. Laser Technol.
156
,
108578
(
2022
).
41.
A.
Sabella
,
J. A.
Piper
, and
R. P.
Mildren
, “
1240 nm diamond Raman laser operating near the quantum limit
,”
Opt. Lett.
35
(
23
),
3874
(
2010
).
42.
H.
Jasbeer
,
R. J.
Williams
,
O.
Kitzler
,
A.
McKay
,
S.
Sarang
,
J.
Lin
, and
R. P.
Mildren
, “
Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance
,”
J. Opt. Soc. Am. B
33
(
3
),
B56
(
2016
).
43.
R. J.
Williams
,
D. J.
Spence
,
O.
Lux
, and
R. P.
Mildren
, “
High-power continuous-wave Raman frequency conversion from 1.06 μm to 1.49 μm in diamond
,”
Opt. Express
25
(
2
),
749
757
(
2017
).
44.
M.
Li
,
O.
Kitzler
,
R. P.
Mildren
, and
D. J.
Spence
, “
Modelling and characterisation of continuous wave resonantly pumped diamond Raman lasers
,”
Opt. Express
29
(
12
),
18427
18436
(
2021
).
45.
M. H.
Al-Mansoori
,
B.
Bouzid
,
B. M.
Ali
,
M. K.
Abdullah
, and
M. A.
Mahdi
, “
Multi-wavelength Brillouin–Erbium fibre laser in a linear cavity
,”
Opt. Commun.
242
(
1–3
),
209
214
(
2004
).
46.
D.
Jin
,
Z.
Bai
,
M.
Li
,
X.
Yang
,
Y.
Wang
,
R. P.
Mildren
, and
Z.
Lu
, “
Modeling and characterization of high-power single frequency free-space Brillouin lasers
,”
Opt. Express
31
(
2
),
2942
2955
(
2023
).
You do not currently have access to this content.