In this Letter, we demonstrated fully epitaxial ScAlN/AlGaN/GaN based ferroelectric high electron mobility transistors (HEMTs). Clean and atomically sharp heterostructure interfaces were obtained by utilizing molecular beam epitaxy. The fabricated ferroelectric gate HEMTs showed counterclockwise hysteretic transfer curves with a wide threshold voltage tuning range of 3.8 V, a large ON/OFF ratio of 3 × 107, and reconfigurable output characteristics depending on the poling conditions. The high quality ferroelectric gate stack and effective ferroelectric polarization coupling lead to improved subthreshold performance, with subthreshold swing values approaching 110 and 30 mV/dec under forward and backward gate sweeps, respectively. The results provide fundamental insight into the ferroelectric polarization coupling and threshold tuning processes in ferroelectric nitride heterostructures and are promising for nitride-based nonvolatile, multi-functional, reconfigurable power, and radio frequency devices as well as memory devices and negative capacitance transistors for next-generation electronics.

1.
B.
Shen
,
W. P.
Li
,
T.
Someya
,
Z. X.
Bi
,
J.
Liu
,
H. M.
Zhou
,
R.
Zhang
,
F.
Yan
,
Y.
Shi
,
Z. G.
Liu
,
Y. D.
Zheng
, and
Y.
Arakawa
,
Jpn. J. Appl. Phys.
41
(
4S
),
2528
(
2002
).
2.
Y. S.
Kang
,
Q.
Fan
,
B.
Xiao
,
Y. I.
Alivov
,
J. Q.
Xie
,
N.
Onojima
,
S. J.
Cho
,
Y. T.
Moon
,
H.
Lee
,
D.
Johnstone
,
H.
Morkoc
, and
Y. S.
Park
,
Appl. Phys. Lett.
88
(
12
),
123508
(
2006
).
3.
I.
Stolichnov
,
L.
Malin
,
P.
Muralt
, and
N.
Setter
,
Appl. Phys. Lett.
88
(
4
),
043512
(
2006
).
4.
L. Z.
Hao
,
J.
Zhu
,
W. B.
Luo
,
H. Z.
Zeng
,
Y. R.
Li
,
W.
Huang
,
X. W.
Liao
, and
Y.
Zhang
,
Appl. Phys. Lett.
95
(
23
),
232907
(
2009
).
5.
Y. C.
Kong
,
F. S.
Xue
,
J. J.
Zhou
,
L.
Li
,
C.
Chen
, and
Y. R.
Li
,
IEEE Electron. Device Lett.
31
(
2
),
93
(
2010
).
6.
L. Z.
Hao
,
J.
Zhu
,
Y. J.
Liu
,
X. W.
Liao
,
S. L.
Wang
,
J. J.
Zhou
,
C.
Kong
,
H. Z.
Zeng
,
Y.
Zhang
,
W. L.
Zhang
, and
Y. R.
Li
,
Thin Solid Films
520
(
19
),
6313
(
2012
).
7.
T.
Gao
,
R. M.
Xu
,
Y. C.
Kong
,
J. J.
Zhou
,
C.
Kong
,
X.
Dong
, and
T. S.
Chen
,
Appl. Phys. Lett.
106
(
24
),
243501
(
2015
).
8.
C. H.
Wu
,
P. C.
Han
,
S. C.
Liu
,
T. E.
Hsieh
,
F. J.
Lumbantoruan
,
Y. H.
Ho
,
J. Y.
Chen
,
K. S.
Yang
,
H. C.
Wang
,
Y. K.
Lin
,
P. C.
Chang
,
Q. H.
Luc
,
Y. C.
Lin
, and
E. Y.
Chang
,
IEEE Electron Device Lett.
39
(
7
),
991
(
2018
).
9.
J. J.
Zhu
,
L. X.
Chen
,
J.
Jiang
,
X. L.
Lu
,
L.
Yang
,
B.
Hou
,
M.
Liao
,
Y. C.
Zhou
,
X. H.
Ma
, and
Y.
Hao
,
IEEE Electron Device Lett.
39
(
1
),
79
(
2018
).
10.
W. J.
Song
,
Y.
Li
,
K.
Zhang
,
X. M.
Zou
,
J. L.
Wang
,
Y. C.
Kong
,
T. S.
Chen
,
C. Z.
Jiang
,
C. S.
Liu
,
L.
Liao
, and
X. Q.
Liu
,
IEEE Trans. Electron Devices
66
(
10
),
4148
(
2019
).
11.
C. L.
Wu
,
H. S.
Ye
,
N.
Shaju
,
J.
Smith
,
B.
Grisafe
,
S.
Datta
, and
P.
Fay
,
IEEE Electron Device Lett.
41
(
3
),
337
(
2020
).
12.
J. Y.
Yang
,
M. J.
Yeom
,
J.
Lee
,
K.
Lee
,
C.
Park
,
J.
Heo
, and
G.
Yoo
,
Adv. Electron. Mater.
8
(
9
),
2101406
(
2022
).
13.
S.
Salahuddin
and
S.
Dattat
,
Nano Lett.
8
(
2
),
405
(
2008
).
14.
S.
Fichtner
,
N.
Wolff
,
F.
Lofink
,
L.
Kienle
, and
B.
Wagner
,
J. Appl. Phys.
125
(
11
),
114103
(
2019
).
15.
P.
Wang
,
D.
Wang
,
N. M.
Vu
,
T.
Chiang
,
J. T.
Heron
, and
Z. T.
Mi
,
Appl. Phys. Lett.
118
(
22
),
223504
(
2021
).
16.
D.
Wang
,
P.
Wang
,
B. Y.
Wang
, and
Z. T.
Mi
,
Appl. Phys. Lett.
119
(
11
),
111902
(
2021
).
17.
H. T.
Lue
,
C. J.
Wu
, and
T. Y.
Tseng
,
IEEE Trans. Electron Devices
49
(
10
),
1790
(
2002
).
18.
S. M.
Chen
,
S. L.
Tsai
,
K.
Mizutani
,
T.
Hoshii
,
H.
Wakabayashi
,
K.
Tsutsui
,
E. Y.
Chang
, and
K.
Kakushima
,
Jpn. J. Appl. Phys.
61
,
SH1007
(
2022
).
19.
P.
Wang
,
B.
Wang
,
D. A.
Laleyan
,
A.
Pandey
,
Y.
Wu
,
Y.
Sun
,
X.
Liu
,
Z.
Deng
,
E.
Kioupakis
, and
Z.
Mi
,
Appl. Phys. Lett.
118
(
3
),
032102
(
2021
).
20.
D.
Wang
,
P.
Wang
,
S.
Mondal
,
S.
Mohanty
,
T.
Ma
,
E.
Ahmadi
, and
Z. T.
Mi
,
Adv. Electron. Mater.
8
(
9
),
2200005
(
2022
).
21.
D.
Wang
,
P.
Wang
,
S.
Mondal
,
Y.
Xiao
,
M.
Hu
, and
Z.
Mi
,
Appl. Phys. Lett.
121
(
4
),
042108
(
2022
).
22.
P.
Wang
,
D.
Wang
,
Y. T.
Bi
,
B. Y.
Wang
,
J.
Schwartz
,
R.
Hovden
, and
Z. T.
Mi
,
Appl. Phys. Lett.
120
(
1
),
012104
(
2022
).
23.
P.
Wang
,
D.
Wang
,
S.
Mondal
, and
Z. T.
Mi
,
Appl. Phys. Lett.
121
(
2
),
023501
(
2022
).
24.
A. J.
Green
,
J. K.
Gillespie
,
R. C.
Fitch
,
D. E.
Walker
,
M.
Lindquist
,
A.
Crespo
,
D.
Brooks
,
E.
Beam
,
A.
Xie
,
V.
Kumar
,
J.
Jimenez
,
C.
Lee
,
Y.
Cao
,
K. D.
Chabak
, and
G. H.
Jessen
,
IEEE Electron Device Lett.
40
(
7
),
1056
(
2019
).
25.
S.
Krause
,
I.
Streicher
,
P.
Waltereit
,
L.
Kirste
,
P.
Brückner
, and
S.
Leone
,
IEEE Electron Device Lett.
44
(
1
),
17
(
2023
).
26.
J.
Casamento
,
K.
Nomoto
,
T. S.
Nguyen
,
H.
Lee
,
C.
Savant
,
L.
Li
,
A.
Hickman
,
T.
Maeda
,
J.
Encomendero
,
V.
Gund
,
A.
Lal
,
J. C. M.
Hwang
,
H. G.
Xing
, and
D.
Jena
, in
International Electron Devices Meeting (IEDM)
, San Francisco, CA, USA (
IEEE
,
2022
), pp.
11.1.1
11.1.4
.
27.
S.
Mondal
,
D.
Wang
,
P.
Wang
,
Y. P.
Wu
,
M. T.
Hu
,
Y. X.
Xiao
,
S.
Mohanty
,
T.
Ma
,
E.
Ahmadi
, and
Z. T.
Mi
,
APL Mater.
10
(
12
),
121101
(
2022
).
28.
L. X.
Chen
,
H.
Wang
,
B.
Hou
,
M.
Liu
,
L. K.
Shen
,
X. L.
Lu
,
X. H.
Ma
, and
Y.
Hao
,
Appl. Phys. Lett.
115
(
19
),
193505
(
2019
).
29.
D.
Wang
,
P.
Wang
,
S.
Mondal
,
M.
Hu
,
D.
Wang
,
Y.
Wu
,
T.
Ma
, and
Z.
Mi
,
Appl. Phys. Lett.
122
(
5
),
052101
(
2023
).
30.
S. L.
Miller
and
P. J.
Mcwhorter
,
J. Appl. Phys.
72
(
12
),
5999
(
1992
).
You do not currently have access to this content.