The endurance degradation of HfO2-based ferroelectric films limits their development toward practical applications. In this work, we systematically investigate the ferroelectric endurance properties of Hf0.5Zr0.5O2 (HZO) film under various pulse voltages and pulse widths, and it is found that the fatigue severity increases first and then decreases with increasing pulse voltage or width. The nonmonotonic fatigue trend explains the controversial results in the literature that both faster and slower fatigues with increasing voltage were observed in HZO. Accordingly, low voltages of ±1.6 V/100 ns are applied for cycling the HZO device to achieve weaker fatigue and a sufficiently switched ferroelectric polarization (7–12 μC cm−2), and a recovery method by introducing wake-up effect is utilized to realize an enhanced endurance >1.01 × 1012 (>5.0 × 1013 in expectation). Our work provides a universal way to weaken fatigue and improve endurance performance of HfO2-based ferroelectric random access memory devices.

1.
T.
Mikolajick
,
U.
Schroeder
, and
S.
Slesazeck
,
IEEE Trans. Electron Devices
67
,
1434
(
2020
).
2.
T.
Mikolajick
,
S.
Slesazeck
,
M. H.
Park
, and
U.
Schroeder
,
MRS Bull.
43
,
340
(
2018
).
3.
J. F.
Ihlefeld
,
D. T.
Harris
,
R.
Keech
,
J. L.
Jones
,
J.-P.
Maria
, and
S.
Trolier-McKinstry
,
J. Am. Ceram. Soc.
99
,
2537
(
2016
).
4.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
,
MRS Commun.
8
,
795
(
2018
).
5.
J.
Muller
,
T. S.
Boscke
,
U.
Schroder
,
S.
Mueller
,
D.
Brauhaus
,
U.
Bottger
,
L.
Frey
, and
T.
Mikolajick
,
Nano Lett.
12
,
4318
(
2012
).
6.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
7.
Y.
Yun
,
P.
Buragohain
,
M.
Li
,
Z.
Ahmadi
,
Y.
Zhang
,
X.
Li
,
H.
Wang
,
J.
Li
,
P.
Lu
,
L.
Tao
,
H.
Wang
,
J. E.
Shield
,
E. Y.
Tsymbal
,
A.
Gruverman
, and
X.
Xu
,
Nat. Mater.
21
,
903
(
2022
).
8.
A. I.
Khan
,
A.
Keshavarzi
, and
S.
Datta
,
Nat. Electron.
3
,
588
(
2020
).
9.
H.
Kohlstedt
,
Y.
Mustafa
,
A.
Gerber
,
A.
Petraru
,
M.
Fitsilis
,
R.
Meyer
,
U.
Böttger
, and
R.
Waser
,
Microelectron. Eng.
80
,
296
(
2005
).
10.
P. J.
Liao
,
Y. K.
Chang
,
Y.-H.
Lee
,
Y. M.
Lin
,
S. H.
Yeong
,
R. L.
Hwang
,
V.
Hou
,
C. H.
Nien
,
R.
Lu
, and
C. T.
Lin
, in
Symposium on VLSI Technology
,
Kyoto
,
2021
.
11.
L.
Yin
,
S.
Gong
,
X.
Li
,
B.
Lu
,
Q.
Peng
,
S.
Zheng
,
M.
Liao
, and
Y.
Zhou
,
J. Alloys Compd.
914
,
165301
(
2022
).
12.
A. G.
Chernikova
,
M. G.
Kozodaev
,
D. V.
Negrov
,
E. V.
Korostylev
,
M. H.
Park
,
U.
Schroeder
,
C. S.
Hwang
, and
A. M.
Markeev
,
ACS Appl. Mater. Interfaces
10
,
2701
(
2018
).
13.
K.
Tahara
,
Y.
Hikosaka
,
K.
Toprasertpong
,
K.
Nakamura
,
H.
Saito
,
M.
Takenaka
, and
S.
Takagi
, in
Symposium on VLSI Technology
, Kyoto,
2021
.
14.
J.
Okuno
,
T.
Yonai
,
T.
Kunihiro
,
K.
Konishi
,
M.
Materano
,
T.
Ali
,
M.
Lederer
,
K.
Seidel
,
T.
Mikolajick
,
U.
Schroeder
,
M.
Tsukamoto
, and
T.
Umebayashi
, in
6th IEEE Electron Devices Technology and Manufacturing Conference (EDTM)
(
IEEE
,
2022
).
15.
H.
Mulaosmanovic
,
E. T.
Breyer
,
T.
Mikolajick
, and
S.
Slesazeck
,
IEEE Electron Device Lett.
40
,
216
(
2019
).
16.
T.
Gong
,
L.
Tao
,
J.
Li
,
Y.
Cheng
,
Y.
Xu
,
W.
Wei
,
P.
Jiang
,
P.
Yuan
,
Y.
Wang
,
Y.
Chen
,
Y.
Ding
,
Y.
Yang
,
Y.
Wang
,
B.
Chen
,
Q.
Luo
,
S. S.
Chung
,
S.
Du
, and
M.
Liu
, in
Symposium on VLSI Technology
, Kyoto,
2021
.
17.
Y.
Peng
,
W.
Xiao
,
Y.
Liu
,
C.
Jin
,
X.
Deng
,
Y.
Zhang
,
F.
Liu
,
Y.
Zheng
,
Y.
Cheng
, and
B.
Chen
,
IEEE Electron Device Lett.
43
,
216
(
2022
).
18.
M.
Popovici
,
A. M.
Walke
,
K.
Banerjee
,
N.
Ronchi
,
J.
Meersschaut
,
U.
Celano
,
S.
McMitchell
,
V.
Spampinato
,
A.
Franquet
,
P.
Favia
,
J.
Swerts
,
G.
Van den Bosch
, and
J.
Van Houdt
,
Phys. Stat. Solidi RRL
15
,
2100033
(
2021
).
19.
X.
Lyu
,
M.
Si
,
X.
Sun
,
M. A.
Capano
,
H.
Wang
, and
P. D.
Ye
, in
Symposium on VLSI Technology
,
Kyoto
,
2019
.
20.
Z.
Gao
,
S.
Lyu
, and
H.
Lyu
,
J. Semicond.
43
,
014102
(
2022
).
21.
T.
Song
,
R.
Bachelet
,
G.
Saint-Girons
,
R.
Solanas
,
I.
Fina
, and
F.
Sánchez
,
ACS Appl. Electron. Mater.
2
,
3221
(
2020
).
22.
Z.
Dang
,
S.
Lv
,
Z.
Gao
,
M.
Chen
,
Y.
Xu
,
P.
Jiang
,
Y.
Ding
,
P.
Yuan
,
Y.
Wang
, and
Y.
Chen
,
IEEE Electron Device Lett.
43
,
561
(
2022
).
23.
R.
Cao
,
B.
Song
,
D.
Shang
,
Y.
Yang
,
Q.
Luo
,
S.
Wu
,
Y.
Li
,
Y.
Wang
,
H.
Lv
, and
Q.
Liu
,
IEEE Electron Device Lett.
40
,
1744
(
2019
).
24.
X.
Li
,
C.
Li
,
Z.
Xu
,
Y.
Li
,
Y.
Yang
,
H.
Hu
,
Z.
Jiang
,
J.
Wang
,
J.
Ren
,
C.
Zheng
,
C.
Lu
, and
Z.
Wen
,
Phys. Status Solidi RRL
15
,
2000481
(
2021
).
25.
P.
Polakowski
and
J.
Müller
,
Appl. Phys. Lett.
106
,
232905
(
2015
).
26.
J.
Müller
,
U.
Schröder
,
T. S.
Böscke
,
I.
Müller
,
U.
Böttger
,
L.
Wilde
,
J.
Sundqvist
,
M.
Lemberger
,
P.
Kücher
, and
T.
Mikolajick
,
J. Appl. Phys.
110
,
114113
(
2011
).
27.
D.
Das
,
B.
Buyantogtokh
,
V.
Gaddam
, and
S.
Jeon
,
IEEE Trans. Electron Devices
69
,
103
(
2022
).
28.
Z.
Yan
,
D.
Wang
,
C.
Luo
,
J.
Cheng
,
S.
Huo
,
B.
Zhang
,
R.
Tao
,
D.
Chen
,
Z.
Fan
,
J.-Y.
Dai
,
X.
Lu
, and
J. M.
Liu
,
IEEE Trans. Electron Devices
69
,
3094
(
2022
).
29.
V.
Gaddam
,
D.
Das
, and
S.
Jeon
,
IEEE Trans. Electron Devices
67
,
745
(
2020
).
30.
Y.
Lee
,
Y.
Goh
,
J.
Hwang
,
D.
Das
, and
S.
Jeon
,
IEEE Trans. Electron Devices
68
,
523
(
2021
).
31.
K.
Takada
,
M.
Murase
,
S.
Migita
,
Y.
Morita
,
H.
Ota
,
N.
Fujimura
, and
T.
Yoshimura
,
Appl. Phys. Lett.
119
,
032902
(
2021
).
32.
P. D.
Lomenzo
,
Q.
Takmeel
,
C. Z.
Zhou
,
C. M.
Fancher
,
E.
Lambers
,
N. G.
Rudawski
,
J. L.
Jones
,
S.
Moghaddam
, and
T.
Nishida
,
J. Appl. Phys.
117
,
134105
(
2015
).
33.
H. J.
Kim
,
M. H.
Park
,
Y. J.
Kim
,
Y. H.
Lee
,
T.
Moon
,
K.
Do Kim
,
S. D.
Hyun
, and
C. S.
Hwang
,
Nanoscale
8
,
1383
(
2016
).
34.
F.
Mehmood
,
T.
Mikolajick
, and
U.
Schroeder
,
Phys. Status Solidi A
217
,
2000281
(
2020
).
35.
K. Y.
Hsiang
,
C. Y.
Liao
,
Y. Y.
Lin
,
Z. F.
Lou
,
C. Y.
Lin
,
J. Y.
Lee
,
F. S.
Chang
,
Z. X.
Li
,
H. C.
Tseng
,
C. C.
Wang
,
W. C.
Ray
,
T. H.
Hou
,
T. C.
Chen
,
C. S.
Chang
, and
M. H.
Lee
,
IEEE International Reliability Physics Symposium (IRPS)
(
IEEE
,
2022
).
36.
A. K.
Tagantsev
,
I.
Stolichnov
,
E. L.
Colla
, and
N.
Setter
,
J. Appl. Phys.
90
,
1387
(
2001
).
37.
M.
Pesic
,
F. P. G.
Fengler
,
L.
Larcher
,
A.
Padovani
,
T.
Schenk
,
E. D.
Grimley
,
X. H.
Sang
,
J. M.
LeBeau
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
,
Adv. Funct. Mater.
26
,
4601
(
2016
).
38.
Y.
Cheng
,
Z.
Gao
,
K. H.
Ye
,
H. W.
Park
,
Y.
Zheng
,
Y.
Zheng
,
J.
Gao
,
M. H.
Park
,
J.-H.
Choi
, and
K.-H.
Xue
,
Nat. Commun.
13
,
645
(
2022
).
39.
S.-C.
Chang
,
N.
Haratipour
,
S.
Shivaraman
,
T. L.
Brown-Heft
,
J.
Peck
,
C.-C.
Lin
,
I.-C.
Tung
,
D. R.
Merrill
,
H.
Liu
, and
C.-Y.
Lin
, in
IEDM Technical Digest
,
2020
.
40.
F.
Chu
,
G.
Fox
, and
T.
Davenport
,
Integr. Ferroelectr.
36
,
43
(
2001
).

Supplementary Material

You do not currently have access to this content.