Obtaining uniform silicon concentration, especially with low concentrations (ranging from 1 × 1016 to 1 × 1018 cm−3) by molecular beam epitaxy, has been challenging due to oxidation of a silicon solid source in the oxide environment. In this work, Si doping of β-Ga2O3 (010) films by diluted disilane as the Si source is investigated using hybrid plasma-assisted molecular beam epitaxy. The impact of growth temperature, disilane source concentration, and disilane flow rate on Si incorporation was studied by secondary ion mass spectrometry. Uniform Si concentrations ranging from 3 × 1016 to 2 × 1019 cm−3 are demonstrated. Si-doped β-Ga2O3 films with different silicon concentrations were grown on Fe-doped β-Ga2O3 (010) substrates. The electron concentration and mobility were determined using van de Pauw Hall measurements. A high mobility of 135 cm2/V s was measured for an electron concentration of 3.4 × 1017 cm−3 at room temperature.

1.
H. H.
Tippins
, “
Optical absorption and photoconductivity in the band edge of β-Ga2O3
,”
Phys. Rev.
140
(
1A
),
A316
(
1965
).
2.
J.
Zhang
,
J.
Shi
,
D.-C.
Qi
,
L.
Chen
, and
K. H.
Zhang
, “
Recent progress on the electronic structure, defect, and doping properties of Ga2O3
,”
APL Mater.
8
(
2
),
020906
(
2020
).
3.
S.
Stepanov
,
V.
Nikolaev
,
V.
Bougrov
, and
A.
Romanov
, “
Gallium OXIDE: Properties and application - a review
,”
Rev. Adv. Mater. Sci.
44
,
63
(
2016
).
4.
R.
Suzuki
,
S.
Nakagomi
,
Y.
Kokubun
,
N.
Arai
, and
S.
Ohira
, “
Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing
,”
Appl. Phys. Lett.
94
(
22
),
222102
(
2009
).
5.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
, “
Deep-ultraviolet transparent conductive β-Ga2O3 thin films
,”
Appl. Phys. Lett.
77
(
25
),
4166
(
2000
).
6.
D.
Guo
,
Z.
Wu
,
P.
Li
,
Y.
An
,
H.
Liu
,
X.
Guo
,
H.
Yan
,
G.
Wang
,
C.
Sun
, and
L.
Li
, “
Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology
,”
Opt. Mater. Express
4
(
5
),
1067
(
2014
).
7.
B.
Jayant Baliga
, “
Semiconductors for high‐voltage, vertical channel field‐effect transistors
,”
J. Appl. Phys.
53
(
3
),
1759
(
1982
).
8.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys.
55
(
12
),
1202A2
(
2016
).
9.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
, “
Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS
,”
J. Appl. Phys.
124
(
22
),
220901
(
2018
).
10.
M.
Higashiwaki
,
K.
Konishi
,
K.
Sasaki
,
K.
Goto
,
K.
Nomura
,
Q.
Tu Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
, and
B.
Monemar
, “
Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy
,”
Appl. Phys. Lett.
108
(
13
),
133503
(
2016
).
11.
Z.
Hu
,
K.
Nomoto
,
W.
Li
,
Z.
Zhang
,
N.
Tanen
,
Q.
Tu Thieu
,
K.
Sasaki
,
A.
Kuramata
,
T.
Nakamura
, and
D.
Jena
, “
Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors
,”
Appl. Phys. Lett.
113
(
12
),
122103
(
2018
).
12.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
, “
2300 V reverse breakdown voltage Ga2O3 Schottky rectifiers
,”
ECS J. Solid State Sci. Technol.
7
(
5
),
Q92
(
2018
).
13.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
1-kV vertical Ga2O3 field-plated Schottky barrier diodes
,”
Appl. Phys. Lett.
110
(
10
),
103506
(
2017
).
14.
L.
Du
,
Q.
Xin
,
M.
Xu
,
Y.
Liu
,
W.
Mu
,
S.
Yan
,
X.
Wang
,
G.
Xin
,
Z.
Jia
, and
X.-T.
Tao
, “
High-performance Ga2O3 diode based on tin oxide Schottky contact
,”
IEEE Electron Device Lett.
40
(
3
),
451
(
2019
).
15.
L.
Du
,
Q.
Xin
,
M.
Xu
,
Y.
Liu
,
G.
Liang
,
W.
Mu
,
Z.
Jia
,
X.
Wang
,
G.
Xin
, and
X.-T.
Tao
, “
Achieving high performance Ga2O3 diodes by adjusting chemical composition of tin oxide Schottky electrode
,”
Semicond. Sci. Technol.
34
(
7
),
075001
(
2019
).
16.
C.
Joishi
,
S.
Rafique
,
Z.
Xia
,
L.
Han
,
S.
Krishnamoorthy
,
Y.
Zhang
,
S.
Lodha
,
H.
Zhao
, and
S.
Rajan
, “
Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes
,”
Appl. Phys. Express
11
(
3
),
031101
(
2018
).
17.
K.
Zeng
,
Y.
Jia
, and
U.
Singisetti
, “
Interface state density in atomic layer deposited SiO2/β-Ga2O3 MOSCAPs
,”
IEEE Electron Device Lett.
37
(
7
),
906
(
2016
).
18.
M. A.
Bhuiyan
,
H.
Zhou
,
R.
Jiang
,
E. X.
Zhang
,
D. M.
Fleetwood
,
D.
Ye Peide
, and
T.-P.
Ma
, “
Charge trapping in Al2O3/β-Ga2O3-based MOS capacitors
,”
IEEE Electron Device Lett.
39
(
7
),
1022
(
2018
).
19.
H.
Bae
,
J.
Noh
,
S.
Alghamdi
,
M.
Si
, and
D.
Ye Peide
, “
Ultraviolet light-based current–voltage method for simultaneous extraction of donor-and acceptor-like interface traps in β-Ga2O3 FETs
,”
IEEE Electron Device Lett.
39
(
11
),
1708
(
2018
).
20.
M.
Hoi Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V
,”
IEEE Electron Device Lett.
37
(
2
),
212
(
2016
).
21.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates
,”
Appl. Phys. Lett.
100
(
1
),
013504
(
2012
).
22.
Z.
Hu
,
K.
Nomoto
,
W.
Li
,
N.
Tanen
,
K.
Sasaki
,
A.
Kuramata
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
, “
Enhancement-mode Ga2O3 vertical transistors with breakdown voltage > 1 kV
,”
IEEE Electron Device Lett.
39
(
6
),
869
(
2018
).
23.
B.
Chatterjee
,
W.
Li
,
K.
Nomoto
,
H. G.
Xing
, and
S.
Choi
, “
Thermal design of multi-fin Ga2O3 vertical transistors
,”
Appl. Phys. Lett.
119
(
10
),
103502
(
2021
).
24.
H.-C.
Huang
,
Z.
Ren
,
A. F. M.
Anhar Uddin Bhuiyan
,
Z.
Feng
,
Z.
Yang
,
X.
Luo
,
A. Q.
Huang
,
A.
Green
,
K.
Chabak
, and
H.
Zhao
, “
β-Ga2O3 FinFETs with ultra-low hysteresis by plasma-free metal-assisted chemical etching
,”
Appl. Phys. Lett.
121
(
5
),
052102
(
2022
).
25.
S.
Xu
,
L.
Liu
,
G.
Qu
,
X.
Zhang
,
C.
Jia
,
S.
Wu
,
Y.
Ma
,
Y. J.
Lee
,
G.
Wang
, and
J.-H.
Park
, “
Single β-Ga2O3 nanowire based lateral FinFET on Si
,”
Appl. Phys. Lett.
120
(
15
),
153501
(
2022
).
26.
Z.
Hu
,
K.
Nomoto
,
W.
Li
,
R.
Jinno
,
T.
Nakamura
,
D.
Jena
, and
H.
Xing
, paper presented at the
2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD)
, Shanghai, China, May 19–23 (
2019
).
27.
Y.
Zhang
,
A.
Neal
,
Z.
Xia
,
C.
Joishi
,
J. M.
Johnson
,
Y.
Zheng
,
S.
Bajaj
,
M.
Brenner
,
D.
Dorsey
, and
K.
Chabak
, “
Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures
,”
Appl. Phys. Lett.
112
(
17
),
173502
(
2018
).
28.
S.
Krishnamoorthy
,
Z.
Xia
,
C.
Joishi
,
Y.
Zhang
,
J.
McGlone
,
J.
Johnson
,
M.
Brenner
,
A. R.
Arehart
,
J.
Hwang
, and
S.
Lodha
, “
Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor
,”
Appl. Phys. Lett.
111
(
2
),
023502
(
2017
).
29.
H.
Yuan
,
J.
Su
,
R.
Guo
,
K.
Tian
,
Z.
Lin
,
J.
Zhang
,
J.
Chang
, and
Y.
Hao
, “
Contact barriers modulation of graphene/β-Ga2O3 interface for high-performance Ga2O3 devices
,”
Appl. Surf. Sci.
527
,
146740
(
2020
).
30.
M.
Hoi Wong
,
K.
Goto
,
Y.
Morikawa
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer
,”
Appl. Phys. Express
11
(
6
),
064102
(
2018
).
31.
M.
Hoi Wong
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Current aperture vertical β-Ga2O3 MOSFETs fabricated by N-and Si-ion implantation doping
,”
IEEE Electron Device Lett.
40
(
3
),
431
(
2019
).
32.
M.
Hoi Wong
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker
,”
IEEE Electron Device Lett.
41
(
2
),
296
(
2020
).
33.
F.
Alema
,
Y.
Zhang
,
A.
Osinsky
,
N.
Valente
,
A.
Mauze
,
T.
Itoh
, and
J. S.
Speck
, “
Low temperature electron mobility exceeding 104 cm2/V s in MOCVD grown β-Ga2O3
,”
APL Mater.
7
(
12
),
121110
(
2019
).
34.
Z.
Feng
,
A. F. M. A. U.
Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
, “
MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties
,”
Appl. Phys. Lett.
114
(
25
),
250601
(
2019
).
35.
Y.
Zhang
,
F.
Alema
,
A.
Mauze
,
O. S.
Koksaldi
,
R.
Miller
,
A.
Osinsky
, and
J. S.
Speck
, “
MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature
,”
APL Mater.
7
(
2
),
022506
(
2019
).
36.
M.
Baldini
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
D.
Klimm
,
R.
Schewski
, and
G.
Wagner
, “
Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy
,”
J. Mater. Sci.
51
(
7
),
3650
(
2016
).
37.
M.
Baldini
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
R.
Schewski
, and
G.
Wagner
, “
Si-and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates
,”
ECS J. Solid State Sci. Technol.
6
(
2
),
Q3040
(
2017
).
38.
K. D.
Leedy
,
K. D.
Chabak
,
V.
Vasilyev
,
D. C.
Look
,
J. J.
Boeckl
,
J. L.
Brown
,
S. E.
Tetlak
,
A. J.
Green
,
N. A.
Moser
, and
A.
Crespo
, “
Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition
,”
Appl. Phys. Lett.
111
(
1
),
012103
(
2017
).
39.
E.
Ahmadi
,
O. S.
Koksaldi
,
S. W.
Kaun
,
Y.
Oshima
,
D. B.
Short
,
U. K.
Mishra
, and
J. S.
Speck
, “
Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Express
10
(
4
),
041102
(
2017
).
40.
N. K.
Kalarickal
,
Z.
Xia
,
J.
McGlone
,
S.
Krishnamoorthy
,
W.
Moore
,
M.
Brenner
,
A. R.
Arehart
,
S. A.
Ringel
, and
S.
Rajan
, “
Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3
,”
Appl. Phys. Lett.
115
(
15
),
152106
(
2019
).
41.
J. P.
McCandless
,
V.
Protasenko
,
B. W.
Morell
,
E.
Steinbrunner
,
A. T.
Neal
,
N.
Tanen
,
Y.
Cho
,
T. J.
Asel
,
S.
Mou
, and
P.
Vogt
, “
Controlled Si doping of β-Ga2O3 by molecular beam epitaxy
,”
Appl. Phys. Lett.
121
,
072108
(
2022
).
42.
H.
Okumura
,
M.
Kita
,
K.
Sasaki
,
A.
Kuramata
,
M.
Higashiwaki
, and
J. S.
Speck
, “
Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Express
7
(
9
),
095501
(
2014
).
43.
S.-H.
Han
,
A.
Mauze
,
E.
Ahmadi
,
T.
Mates
,
Y.
Oshima
, and
J. S.
Speck
, “
n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy
,”
Semicond. Sci. Technol.
33
(
4
),
045001
(
2018
).
44.
A.
Mauze
,
Y.
Zhang
,
T.
Itoh
,
E.
Ahmadi
, and
J. S.
Speck
, “
Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
117
(
22
),
222102
(
2020
).
45.
H.
Hirayama
,
T.
Tatsumi
, and
N.
Aizaki
, “
Disilane gas source Si-MBE
,”
J. Cryst. Growth
95
(
1–4
),
476
(
1989
).
46.
W. K.
Liu
,
S. M.
Mokler
,
N.
Ohtani
,
C.
Roberts
, and
B. A.
Joyce
, “
A RHEED study of the surface reconstructions of Si (001) during gas source MBE using disilane
,”
Surf. Sci.
264
(
3
),
301
(
1992
).
47.
K.
Kimura
,
S.
Horiguchi
,
K.
Kamon
,
M.
Shimazu
,
M.
Mashita
,
M.
Mihara
, and
M.
Ishii
, “
Silicon doping from disilane in gas source MBE of GaAs
,”
J. Cryst. Growth
81
(
1–4
),
276
(
1987
).
48.
A.
Sandhu
,
T.
Fujii
,
H.
Ando
,
T.
Takahashi
,
H.
Ishikawa
,
N. O. N.
Okamoto
, and
N. Y. N.
Yokoyama
, “
Gas source MBE growth of GaAs/AlGaAs heterojunction bipolar transistor with a carbon doped base using only gaseous sources
,”
Jpn. J. Appl. Phys.
30
(
3R
),
464
(
1991
).
49.
A.
Sandhu
,
T.
Fujii
,
H.
Ando
, and
H.
Ishikawa
, “
A study of cold dopant sources for gas source MBE: The use of disilane as an n-type dopant of AlxGa1-xAs (x = 0–0.28) and trimethylgallium as a p-type dopant of GaAs
,”
Jpn. J. Appl. Phys.
29
(
7A
),
L1033
(
1990
).
50.
M.
Weyers
,
J.
Musolf
,
D.
Marx
,
A.
Kohl
, and
P.
Balk
, “
Gaseous dopant sources in MOMBE/CBE
,”
J. Crystal Growth
105
(
1–4
),
383
(
1990
).
51.
Y.
Oshima
,
E.
Ahmadi
,
S.
Kaun
,
F.
Wu
, and
J. S.
Speck
, “
Growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy
,”
Semicond. Sci. Technol.
33
(
1
),
015013
(
2018
).
52.
E.
Ahmadi
,
Y.
Oshima
,
F.
Wu
, and
J. S.
Speck
, “
Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy
,”
Semicond. Sci. Technol.
32
(
3
),
035004
(
2017
).
53.
A.
Mauze
,
Y.
Zhang
,
T.
Mates
,
F.
Wu
, and
J. S.
Speck
, “
Investigation of unintentional Fe incorporation in (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
115
(
5
),
052102
(
2019
).
54.
J. F.
McGlone
,
Z.
Xia
,
Y.
Zhang
,
C.
Joishi
,
S.
Lodha
,
S.
Rajan
,
S. A.
Ringel
, and
A. R.
Arehart
, “
Trapping effects in Si δ-doped β-Ga2O3 MESFETs on an Fe-doped β-Ga2O3 substrate
,”
IEEE Electron Device Lett.
39
(
7
),
1042
(
2018
).
55.
C.
Joishi
,
Z.
Xia
,
J.
McGlone
,
Y.
Zhang
,
A. R.
Arehart
,
S.
Ringel
,
S.
Lodha
, and
S.
Rajan
, “
Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors
,”
Appl. Phys. Lett.
113
(
12
),
123501
(
2018
).
56.
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer
,”
Jpn. J. Appl. Phys.
55
(
12
),
1202B9
(
2016
).
57.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy
,”
J. Cryst. Growth
392
,
30
(
2014
).
58.
H.
Omi
,
Y.
Homma
,
V.
Tonchev
, and
A.
Pimpinelli
, “
New types of unstable step-flow growth on Si (111)−(7 × 7) during molecular beam epitaxy: Scaling and universality
,”
Phys. Rev. Lett.
95
(
21
),
216101
(
2005
).
59.
M.
Shinohara
and
N.
Inoue
, “
Behavior and mechanism of step bunching during metalorganic vapor phase epitaxy of GaAs
,”
Appl. Phys. Lett.
66
(
15
),
1936
(
1995
).
60.
A. T.
Neal
,
S.
Mou
,
S.
Rafique
,
H.
Zhao
,
E.
Ahmadi
,
J. S.
Speck
,
K. T.
Stevens
,
J. D.
Blevins
,
D. B.
Thomson
, and
N.
Moser
, “
Donors and deep acceptors in β-Ga2O3
,”
Appl. Phys. Lett.
113
(
6
),
062101
(
2018
).
61.
J.
Wei
,
F.
Liu
,
X.
Rong
,
T.
Wang
,
L.
Yang
,
R.
Tao
,
J.
Yang
,
L.
Guo
,
B.
Shen
, and
X.
Wang
, “
Effect of unintentional nitrogen incorporation on n-type doping of β-Ga2O3 grown by molecular beam epitaxy
,”
CrystEngComm.
24
(
2
),
269
274
(
2022
).
You do not currently have access to this content.