Antiferromagnetic transition metal oxides are an established and widely studied materials system in the context of spin-based electronics, commonly used as passive elements in exchange bias-based memory devices. Currently, major interest has resurged due to the recent observation of long-distance spin transport, current-induced switching, and THz emission. As a result, insulating transition metal oxides are now considered to be attractive candidates for active elements in future spintronic devices. Here, we discuss some of the most promising materials systems and highlight recent advances in reading and writing antiferromagnetic ordering. This article aims to provide an overview of the current research and potential future directions in the field of antiferromagnetic insulatronics.

1.
S. A.
Wolf
,
D. D.
Awschalom
,
R. A.
Buhrman
,
J. M.
Daughton
,
S.
von Molnár
,
M. L.
Roukes
,
A. Y.
Chtchelkanova
, and
D. M.
Treger
, “
Spintronics: A spin-based electronics vision for the future
,”
Science
294
,
1488
1495
(
2001
).
2.
A. H.
MacDonald
and
M.
Tsoi
, “
Antiferromagnetic metal spintronics
,”
Philos. Trans. R. Soc., A
369
,
3098
3114
(
2011
).
3.
E. V.
Gomonay
and
V. M.
Loktev
, “
Spintronics of antiferromagnetic systems (Review Article)
,”
Low Temp. Phys.
40
,
17
35
(
2014
).
4.
O.
Gomonay
,
T.
Jungwirth
, and
J.
Sinova
, “
Concepts of antiferromagnetic spintronics
,”
Phys. Status Solidi RRL
11
,
1700022
(
2017
).
5.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
, “
Antiferromagnetic spintronics
,”
Rev. Mod. Phys.
90
,
015005
(
2018
).
6.
S.
Fukami
,
V. O.
Lorenz
, and
O.
Gomonay
, “
Antiferromagnetic spintronics
,”
J. Appl. Phys.
128
,
070401
(
2020
).
7.
S.
Loth
,
S.
Baumann
,
C. P.
Lutz
,
D. M.
Eigler
, and
A. J.
Heinrich
, “
Bistability in atomic-scale antiferromagnets
,”
Science
335
,
196
199
(
2012
).
8.
C.
Kittel
, “
Theory of antiferromagnetic resonance
,”
Phys. Rev.
82
,
565
(
1951
).
9.
S.
Wienholdt
,
D.
Hinzke
, and
U.
Nowak
, “
THz switching of antiferromagnets and ferrimagnets
,”
Phys. Rev. Lett.
108
,
247207
(
2012
).
10.
P.
Němec
,
M.
Fiebig
,
T.
Kampfrath
, and
A. V.
Kimel
, “
Antiferromagnetic opto-spintronics
,”
Nat. Phys.
14
,
229
241
(
2018
).
11.
T.
Kampfrath
,
A.
Sell
,
G.
Klatt
,
A.
Pashkin
,
S.
Mährlein
,
T.
Dekorsy
,
M.
Wolf
,
M.
Fiebig
,
A.
Leitenstorfer
, and
R.
Huber
, “
Coherent terahertz control of antiferromagnetic spin waves
,”
Nat. Photonics
5
,
31
34
(
2011
).
12.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
, “
Antiferromagnetic spintronics
,”
Nat. Nanotechnol.
11
,
231
241
(
2016
).
13.
P.
Wadley
,
B.
Howells
,
J.
Železný
,
C.
Andrews
,
V.
Hills
,
R. P.
Campion
,
V.
Novák
,
K.
Olejník
,
F.
Maccherozzi
,
S. S.
Dhesi
,
S. Y.
Martin
,
T.
Wagner
,
J.
Wunderlich
,
F.
Freimuth
,
Y.
Mokrousov
,
J.
Kuneš
,
J. S.
Chauhan
,
M. J.
Grzybowski
,
A. W.
Rushforth
,
K.
Edmond
,
B. L.
Gallagher
, and
T.
Jungwirth
, “
Spintronics: Electrical switching of an antiferromagnet
,”
Science
351
,
587
590
(
2016
).
14.
R.
Cheng
,
M. W.
Daniels
,
J. G.
Zhu
, and
D.
Xiao
, “
Antiferromagnetic spin wave field-effect transistor
,”
Sci. Rep.
6
,
24223
(
2016
).
15.
T.
Banerjee
,
Oxide Spintronics
(
Jenny Stanford Publishing
,
2019
).
16.
M.
Bibes
and
A.
Barthelemy
, “
Oxide spintronics
,”
IEEE Trans. Electron Devices
54
,
1003
1023
(
2007
).
17.
F.
Trier
,
P.
Noel
,
J.-V.
Kim
,
J.-P.
Attane
,
L.
Vila
, and
M.
Bibes
, “
Oxide spin-orbitronics: Spin-charge interconversion and topological spin textures
,”
Nat. Rev. Mater.
7
,
258
274
(
2022
).
18.
S.-W.
Cheong
,
M.
Fiebig
,
W.
Wu
,
L.
Chapon
, and
V.
Kiryukhin
, “
Seeing is believing: Visualization of antiferromagnetic domains
,”
npj Quantum Mater.
5
,
3
(
2020
).
19.
W. L.
Roth
, “
Multispin axis structures for antiferromagnets
,”
Phys. Rev.
111
,
772
781
(
1958
).
20.
W. L.
Roth
, “
Neutron and optical studies of domains in NiO
,”
J. Appl. Phys.
31
,
2000
2011
(
1960
).
21.
S. A.
Siddiqui
,
J.
Sklenar
,
K.
Kang
,
M. J.
Gilbert
,
A.
Schleife
,
N.
Mason
, and
A.
Hoffmann
, “
Metallic antiferromagnets
,”
J. Appl. Phys.
128
,
040904
(
2020
).
22.
C.
Tzschaschel
,
K.
Otani
,
R.
Iida
,
T.
Shimura
,
H.
Ueda
,
S.
Günther
,
M.
Fiebig
, and
T.
Satoh
, “
Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO
,”
Phys. Rev. B
95
,
174407
(
2017
).
23.
V.
Saidl
,
P.
Němec
,
P.
Wadley
,
V.
Hills
,
R. P.
Campion
,
V.
Novák
,
K. W.
Edmonds
,
F.
Maccherozzi
,
S. S.
Dhesi
,
B. L.
Gallagher
,
F.
Trojánek
,
J.
Kuneš
,
J.
Železný
,
P.
Malý
, and
T.
Jungwirth
, “
Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet
,”
Nat. Photonics
11
,
91
96
(
2017
).
24.
H.
Dachs
, “
Linear magnetic birefringence associated with phase transitions
,”
AIP Conf. Proc.
854
,
854
863
(
1973
).
25.
W.
Gebhardt
, “
What can be learned from magnetooptic measurements?
,”
J. Magn. Magn. Mater.
3
,
129
142
(
1976
).
26.
G. A.
Gehring
, “
On the observation of critical indices of primary and secondary order parameters using birefringence
,”
J. Phys. C
10
,
531
542
(
1977
).
27.
H.
Kondoh
and
T.
Takeda
, “
Observation of antiferromagnetic domains in nickel oxide
,”
J. Phys. Soc. Jpn.
19
,
2041
2051
(
1964
).
28.
J.
Xu
,
C.
Zhou
,
M.
Jia
,
D.
Shi
,
C.
Liu
,
H.
Chen
,
G.
Chen
,
G.
Zhang
,
Y.
Liang
,
J.
Li
,
W.
Zhang
, and
Y.
Wu
, “
Imaging antiferromagnetic domains in nickel oxide thin films by optical birefringence effect
,”
Phys. Rev. B
100
,
134413
(
2019
).
29.
J.
Xu
,
H.
Chen
,
C.
Zhou
,
D.
Shi
,
G.
Chen
, and
Y.
Wu
, “
Optical imaging of antiferromagnetic domains in ultrathin CoO(001) films
,”
New J. Phys.
22
,
083033
(
2020
).
30.
F.
Schreiber
,
L.
Baldrati
,
C.
Schmitt
,
R.
Ramos
,
E.
Saitoh
,
R.
Lebrun
, and
M.
Kläui
, “
Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films
,”
Appl. Phys. Lett.
117
,
082401
(
2020
).
31.
F.
Schreiber
,
H.
Meer
,
C.
Schmitt
,
R.
Ramos
,
E.
Saitoh
,
L.
Baldrati
, and
M.
Kläui
, “
Magnetic sensitivity distribution of Hall devices in antiferromagnetic switching experiments
,”
Phys. Rev. Appl.
16
,
064023
(
2021
).
32.
H.
Meer
,
F.
Schreiber
,
C.
Schmitt
,
R.
Ramos
,
E.
Saitoh
,
O.
Gomonay
,
J.
Sinova
,
L.
Baldrati
, and
M.
Kläui
, “
Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO
,”
Nano Lett.
21
,
114
119
(
2021
).
33.
J.
Xu
,
J.
Xia
,
X.
Zhang
,
C.
Zhou
,
D.
Shi
,
H.
Chen
,
T.
Wu
,
Q.
Li
,
H.
Ding
,
Y.
Zhou
, and
Y.
Wu
, “
Exchange-torque-triggered fast switching of antiferromagnetic domains
,”
Phys. Rev. Lett.
128
,
137201
(
2022
).
34.
J.
Stöhr
,
H. A.
Padmore
,
S.
Anders
,
T.
Stammler
, and
M. R.
Scheinfein
, “
Principles of x-ray magnetic dichroism spectromicroscopy
,”
Surf. Rev. Lett.
05
,
1297
1308
(
1998
).
35.
P.
Kuiper
,
B. G.
Searle
,
P.
Rudolf
,
L. H.
Tjeng
, and
C. T.
Chen
, “
X-ray magnetic dichroism of antiferromagnet Fe2O3: The orientation of magnetic moments observed by Fe 2p x-ray absorption spectroscopy
,”
Phys. Rev. Lett.
70
,
1549
1552
(
1993
).
36.
D.
Alders
,
L. H.
Tjeng
,
F. C.
Voogt
,
T.
Hibma
,
G. A.
Sawatzky
,
C. T.
Chen
,
J.
Vogel
,
M.
Sacchi
, and
S.
Iacobucci
, “
Temperature and thickness dependence of magnetic moments in NiO epitaxial films
,”
Phys. Rev. B
57
,
11623
11631
(
1998
).
37.
J.
Stöhr
,
A.
Scholl
,
T. J.
Regan
,
S.
Anders
,
J.
Lüning
,
M. R.
Scheinfein
,
H. A.
Padmore
, and
R. L.
White
, “
Images of the antiferromagnetic structure of a NiO(100) surface by means of x-ray magnetic linear dichroism spectromicroscopy
,”
Phys. Rev. Lett.
83
,
1862
1865
(
1999
).
38.
A.
Scholl
,
J.
Stöhr
,
J.
Lüning
,
J. W.
Seo
,
J.
Fompeyrine
,
H.
Siegwart
,
J.-P.
Locquet
,
F.
Nolting
,
S.
Anders
,
E. E.
Fullerton
,
M. R.
Scheinfein
, and
H. A.
Padmore
, “
Observation of antiferromagnetic domains in epitaxial thin films
,”
Science
287
,
1014
1016
(
2000
).
39.
E.
Arenholz
,
G.
van der Laan
,
R. V.
Chopdekar
, and
Y.
Suzuki
, “
Anisotropic x-ray magnetic linear dichroism at the Fe L2,3 edges in Fe3O4
,”
Phys. Rev. B
74
,
094407
(
2006
).
40.
X.
Moya
,
L. E.
Hueso
,
F.
Maccherozzi
,
A. I.
Tovstolytkin
,
D. I.
Podyalovskii
,
C.
Ducati
,
L. C.
Phillips
,
M.
Ghidini
,
O.
Hovorka
,
A.
Berger
,
M. E.
Vickers
,
E.
Defay
,
S. S.
Dhesi
, and
N. D.
Mathur
, “
Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain
,”
Nat. Mater.
12
,
52
58
(
2013
).
41.
F. P.
Chmiel
,
N.
Waterfield Price
,
R. D.
Johnson
,
A. D.
Lamirand
,
J.
Schad
,
G.
van der Laan
,
D. T.
Harris
,
J.
Irwin
,
M. S.
Rzchowski
,
C.-b.
Eom
, and
P. G.
Radaelli
, “
Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure
,”
Nat. Mater.
17
,
581
585
(
2018
).
42.
S.
Behyan
,
B.
Haines
,
C.
Karanukaran
,
J.
Wang
,
M.
Obst
,
T.
Tyliszczak
, and
S. G.
Urquhart
, “
Surface detection in a STXM microscope
,”
AIP Conf. Proc.
1365
,
184
187
(
2011
).
43.
A.
Wittmann
,
O.
Gomonay
,
K.
Litzius
,
A.
Kaczmarek
,
A. E.
Kossak
,
D.
Wolf
,
A.
Lubk
,
T. N.
Johnson
,
E. A.
Tremsina
,
A.
Churikova
,
F.
Büttner
,
S.
Wintz
,
M.-A.
Mawass
,
M.
Weigand
,
F.
Kronast
,
L.
Scipioni
,
A.
Shepard
,
T.
Newhouse-Illige
,
J. A.
Greer
,
G.
Schütz
,
N. O.
Birge
, and
G. S. D.
Beach
, “
Role of substrate clamping on anisotropy and domain structure in the canted antiferromagnet α-Fe2O3
,”
Phys. Rev. B
106
,
224419
(
2022
).
44.
J. M.
Taylor
,
P.
Cappellaro
,
L.
Childress
,
L.
Jiang
,
D.
Budker
,
P. R.
Hemmer
,
A.
Yacoby
,
R.
Walsworth
, and
M. D.
Lukin
, “
High-sensitivity diamond magnetometer with nanoscale resolution
,”
Nat. Phys.
4
,
810
816
(
2008
).
45.
L.
Rondin
,
J.-P.
Tetienne
,
T.
Hingant
,
J.-F.
Roch
,
P.
Maletinsky
, and
V.
Jacques
, “
Magnetometry with nitrogen-vacancy defects in diamond
,”
Rep. Prog. Phys.
77
,
056503
(
2014
).
46.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
, “
Quantum sensing
,”
Rev. Mod. Phys.
89
,
035002
(
2017
).
47.
F.
Casola
,
T.
van der Sar
, and
A.
Yacoby
, “
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
,”
Nat. Rev. Mater.
3
,
17088
(
2018
).
48.
T.
Lenz
,
G.
Chatzidrosos
,
Z.
Wang
,
L.
Bougas
,
Y.
Dumeige
,
A.
Wickenbrock
,
N.
Kerber
,
J.
Zázvorka
,
F.
Kammerbauer
,
M.
Kläui
,
Z.
Kazi
,
K.-M. C.
Fu
,
K. M.
Itoh
,
H.
Watanabe
, and
D.
Budker
, “
Imaging topological spin structures using light-polarization and magnetic microscopy
,”
Phys. Rev. Appl.
15
,
024040
(
2021
).
49.
P.
Appel
,
B. J.
Shields
,
T.
Kosub
,
N.
Hedrich
,
R.
Hübner
,
J.
Faßbender
,
D.
Makarov
, and
P.
Maletinsky
, “
Nanomagnetism of magnetoelectric granular thin-film antiferromagnets
,”
Nano Lett.
19
,
1682
1687
(
2019
).
50.
T.
Kosub
,
M.
Kopte
,
R.
Hühne
,
P.
Appel
,
B.
Shields
,
P.
Maletinsky
,
R.
Hübner
,
M. O.
Liedke
,
J.
Fassbender
,
O. G.
Schmidt
, and
D.
Makarov
, “
Purely antiferromagnetic magnetoelectric random access memory
,”
Nat. Commun.
8
,
13985
(
2017
).
51.
M. S.
Wörnle
,
P.
Welter
,
M.
Giraldo
,
T.
Lottermoser
,
M.
Fiebig
,
P.
Gambardella
, and
C. L.
Degen
, “
Coexistence of Bloch and Néel walls in a collinear antiferromagnet
,”
Phys. Rev. B
103
,
094426
(
2021
).
52.
P.
Welter
,
B. A.
Josteinsson
,
S.
Josephy
,
A.
Wittmann
,
A.
Morales
,
G.
Puebla-Hellmann
, and
C. L.
Degen
, “
Fast scanning nitrogen-vacancy magnetometry by spectrum demodulation
,” arXiv:2205.06579 (
2022
).
53.
C.
Du
,
T.
van der Sar
,
T. X.
Zhou
,
P.
Upadhyaya
,
F.
Casola
,
H.
Zhang
,
M. C.
Onbasli
,
C. A.
Ross
,
R. L.
Walsworth
,
Y.
Tserkovnyak
, and
A.
Yacoby
, “
Control and local measurement of the spin chemical potential in a magnetic insulator
,”
Science
357
,
195
198
(
2017
).
54.
A.
Finco
,
A.
Haykal
,
R.
Tanos
,
F.
Fabre
,
S.
Chouaieb
,
W.
Akhtar
,
I.
Robert-Philip
,
W.
Legrand
,
F.
Ajejas
,
K.
Bouzehouane
,
N.
Reyren
,
T.
Devolder
,
J.-P.
Adam
,
J.-V.
Kim
,
V.
Cros
, and
V.
Jacques
, “
Imaging non-collinear antiferromagnetic textures via single spin relaxometry
,”
Nat. Commun.
12
,
767
(
2021
).
55.
M.
Rollo
,
A.
Finco
,
R.
Tanos
,
F.
Fabre
,
T.
Devolder
,
I.
Robert-Philip
, and
V.
Jacques
, “
Quantitative study of the response of a single NV defect in diamond to magnetic noise
,”
Phys. Rev. B
103
,
235418
(
2021
).
56.
H.
Wang
,
S.
Zhang
,
N. J.
McLaughlin
,
B.
Flebus
,
M.
Huang
,
Y.
Xiao
,
C.
Liu
,
M.
Wu
,
E. E.
Fullerton
,
Y.
Tserkovnyak
, and
C. R.
Du
, “
Noninvasive measurements of spin transport properties of an antiferromagnetic insulator
,”
Sci. Adv.
8
,
8562
(
2022
).
57.
L.
Néel
, in
Proceedings of the International Conference on Theoretical Physics
, Kyoto (
Science Council of Japan
,
1954
).
58.
B.
Náfrádi
,
T.
Keller
,
F.
Hardy
,
C.
Meingast
,
A.
Erb
, and
B.
Keimer
, “
Magnetostriction and magnetostructural domains in antiferromagnetic YBa2Cu3O6
,”
Phys. Rev. Lett.
116
,
047001
(
2016
).
59.
W. J.
Ince
and
A.
Platzker
, “
Antiferromagnetic domains in RbMnF3
,”
Phys. Rev.
175
,
650
653
(
1968
).
60.
A. V.
Goltsev
,
R. V.
Pisarev
,
T.
Lottermoser
, and
M.
Fiebig
, “
Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3
,”
Phys. Rev. Lett.
90
,
177204
(
2003
).
61.
F. J.
Spooner
and
M. W.
Vernon
, “
Growth, perfection and antiferromagnetic domain structure of epitaxial cobalt oxide
,”
J. Mater. Sci.
4
,
734
742
(
1969
).
62.
A. S.
Zimmermann
,
B. B.
Van Aken
,
H.
Schmid
,
J. P.
Rivera
,
J.
Li
,
D.
Vaknin
, and
M.
Fiebig
, “
Anisotropy of antiferromagnetic 180 domains in magnetoelectric LiMPO4 (M = Fe, Co, Ni)
,”
Eur. Phys. J. B
71
,
355
360
(
2009
).
63.
E. V.
Gomonaj
and
V. M.
Loktev
, “
On the theory of equilibrium magnetoelastic domain structure in easy-plane antiferromagnet
,”
Low Temp. Phys.
25
,
520
526
(
1999
).
64.
H.
Gomonay
and
V. M.
Loktev
, “
Magnetostriction and magnetoelastic domains in antiferromagnets
,”
J. Phys.: Condens. Matter
14
,
3959
3971
(
2002
).
65.
O.
Gomonay
,
V.
Baltz
,
A.
Brataas
, and
Y.
Tserkovnyak
, “
Antiferromagnetic spin textures and dynamics
,”
Nat. Phys.
14
,
213
216
(
2018
).
66.
G. T.
Rado
and
V. J.
Folen
, “
Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains
,”
Phys. Rev. Lett.
7
,
310
311
(
1961
).
67.
A. I.
Mitsek
,
P. F.
Gaidanskii
, and
V. N.
Pushkar
, “
Domain structure of uniaxial antiferromagnets. The problem of nucleation
,”
Phys. Status Solidi
38
,
69
79
(
1970
).
68.
A. H.
Morrish
,
Canted Antiferromagnetism: Hematite
(
World Scientific
,
1995
).
69.
T.
Moriya
, “
Anisotropic superexchange interaction and weak ferromagnetism
,”
Phys. Rev.
120
,
91
98
(
1960
).
70.
O.
Bezencenet
,
D.
Bonamy
,
R.
Belkhou
,
P.
Ohresser
, and
A.
Barbier
, “
Origin and tailoring of the antiferromagnetic domain structure in α-Fe2O3 thin films unraveled by statistical analysis of dichroic spectromicroscopy (x-ray photoemission electron microscopy) images
,”
Phys. Rev. Lett.
106
,
107201
(
2011
).
71.
A.
Ross
,
R.
Lebrun
,
C.
Ulloa
,
D. A.
Grave
,
A.
Kay
,
L.
Baldrati
,
F.
Kronast
,
S.
Valencia
,
A.
Rothschild
, and
M.
Kläui
, “
Structural sensitivity of the spin Hall magnetoresistance in antiferromagnetic thin films
,”
Phys. Rev. B
102
,
094415
(
2020
).
72.
H.
Jani
,
J.
Linghu
,
S.
Hooda
,
R. V.
Chopdekar
,
C.
Li
,
G. J.
Omar
,
S.
Prakash
,
Y.
Du
,
P.
Yang
,
A.
Banas
,
K.
Banas
,
S.
Ghosh
,
S.
Ojha
,
G. R.
Umapathy
,
D.
Kanjilal
,
A.
Ariando
,
S. J.
Pennycook
,
E.
Arenholz
,
P. G.
Radaelli
,
J. M. D.
Coey
,
Y. P.
Feng
, and
T.
Venkatesan
, “
Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3
,”
Nat. Commun.
12
,
1668
(
2021
).
73.
N. A.
Curry
,
G. B.
Johnston
,
P. J.
Besser
, and
A. H.
Morrish
, “
Neutron diffraction measurements on pure and doped synthetic hematite crystals
,”
Philos. Mag.
12
,
221
228
(
1965
).
74.
P. J.
Besser
,
A. H.
Morrish
, and
C. W.
Searle
, “
Magnetocrystalline anisotropy of pure and doped hematite
,”
Phys. Rev.
153
,
632
640
(
1967
).
75.
R.
Lebrun
,
A.
Ross
,
O.
Gomonay
,
S. A.
Bender
,
L.
Baldrati
,
F.
Kronast
,
A.
Qaiumzadeh
,
J.
Sinova
,
A.
Brataas
,
R. A.
Duine
, and
M.
Kläui
, “
Anisotropies and magnetic phase transitions in insulating antiferromagnets determined by a spin-Hall magnetoresistance probe
,”
Commun. Phys.
2
,
50
(
2019
).
76.
R.
Lebrun
,
A.
Ross
,
O.
Gomonay
,
V.
Baltz
,
U.
Ebels
,
A.-L.
Barra
,
A.
Qaiumzadeh
,
A.
Brataas
,
J.
Sinova
, and
M.
Kläui
, “
Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3
,”
Nat. Commun.
11
,
6332
(
2020
).
77.
I.
Boventer
,
H. T.
Simensen
,
A.
Anane
,
M.
Kläui
,
A.
Brataas
, and
R.
Lebrun
, “
Room-temperature antiferromagnetic resonance and inverse spin-Hall voltage in canted antiferromagnets
,”
Phys. Rev. Lett.
126
,
187201
(
2021
).
78.
A.
Ross
,
R.
Lebrun
,
O.
Gomonay
,
D. A.
Grave
,
A.
Kay
,
L.
Baldrati
,
S.
Becker
,
A.
Qaiumzadeh
,
C.
Ulloa
,
G.
Jakob
,
F.
Kronast
,
J.
Sinova
,
R.
Duine
,
A.
Brataas
,
A.
Rothschild
, and
M.
Kläui
, “
Propagation length of antiferromagnetic magnons governed by domain configurations
,”
Nano Lett.
20
,
306
313
(
2020
).
79.
H. J.
Williams
,
R. C.
Sherwood
, and
J. P.
Remeika
, “
Magnetic domains in α-Fe2O3
,”
J. Appl. Phys.
29
,
1772
1773
(
1958
).
80.
H.
Jani
,
J.-C.
Lin
,
J.
Chen
,
J.
Harrison
,
F.
Maccherozzi
,
J.
Schad
,
S.
Prakash
,
C.-B.
Eom
,
A.
Ariando
,
T.
Venkatesan
, and
P. G.
Radaelli
, “
Antiferromagnetic half-skyrmions and bimerons at room temperature
,”
Nature
590
,
74
79
(
2021
).
81.
B. N.
Brockhouse
, “
Antiferromagnetic structure in Cr2O3
,”
J. Chem. Phys.
21
,
961
962
(
1953
).
82.
L. M.
Corliss
,
J. M.
Hastings
,
R.
Nathans
, and
G.
Shirane
, “
Magnetic structure of Cr2O3
,”
J. Appl. Phys.
36
,
1099
1100
(
1965
).
83.
S.
Foner
, “
High-field antiferromagnetic resonance in Cr2O3
,”
Phys. Rev.
130
,
183
197
(
1963
).
84.
I.
Dzyaloshinsky
, “
A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics
,”
J. Phys. Chem. Solids
4
,
241
255
(
1958
).
85.
I. E.
Dzyaloshinskii
, “
On the magneto-electrical effect in antiferromagnets
,”
J. Exp. Theor. Phys.
37
,
881
882
(
1959
).
86.
D. N.
Astrov
, “
The magnetoelectric effect in antiferromagnetics
,”
J. Exp. Theor. Phys.
11
,
984
985
(
1960
).
87.
M.
Fiebig
,
D.
Fröhlich
,
G. S. v
L
, and
R. V.
Pisarev
, “
Domain topography of antiferromagnetic Cr2O3 by second–harmonic generation
,”
Appl. Phys. Lett.
66
,
2906
2908
(
1995
).
88.
K. D.
Belashchenko
, “
Equilibrium magnetization at the boundary of a magnetoelectric antiferromagnet
,”
Phys. Rev. Lett.
105
,
147204
(
2010
).
89.
J.
Wu
,
D.
Carlton
,
J. S.
Park
,
Y.
Meng
,
E.
Arenholz
,
A.
Doran
,
A. T.
Young
,
A.
Scholl
,
C.
Hwang
,
H. W.
Zhao
,
J.
Bokor
, and
Z. Q.
Qiu
, “
Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs
,”
Nat. Phys.
7
,
303
306
(
2011
).
90.
T.
Kosub
,
M.
Kopte
,
F.
Radu
,
O. G.
Schmidt
, and
D.
Makarov
, “
All-electric access to the magnetic-field-invariant magnetization of antiferromagnets
,”
Phys. Rev. Lett.
115
,
097201
(
2015
).
91.
R.
Schlitz
,
T.
Kosub
,
A.
Thomas
,
S.
Fabretti
,
K.
Nielsch
,
D.
Makarov
, and
S. T. B.
Goennenwein
, “
Evolution of the spin Hall magnetoresistance in Cr2O3/Pt bilayers close to the Néel temperature
,”
Appl. Phys. Lett.
112
,
132401
(
2018
).
92.
Y.
Ji
,
J.
Miao
,
Y. M.
Zhu
,
K. K.
Meng
,
X. G.
Xu
,
J. K.
Chen
,
Y.
Wu
, and
Y.
Jiang
, “
Negative spin Hall magnetoresistance in antiferromagnetic Cr2O3/Ta bilayer at low temperature region
,”
Appl. Phys. Lett.
112
,
232404
(
2018
).
93.
W.
Yuan
,
Q.
Zhu
,
T.
Su
,
Y.
Yao
,
W.
Xing
,
Y.
Chen
,
Y.
Ma
,
X.
Lin
,
J.
Shi
,
R.
Shindou
,
X. C.
Xie
, and
W.
Han
, “
Experimental signatures of spin superfluid ground state in canted antiferromagnet Cr2O3 via nonlocal spin transport
,”
Sci. Adv.
4
,
eaat1098
(
2018
).
94.
N.
Hedrich
,
K.
Wagner
,
O. V.
Pylypovskyi
,
B. J.
Shields
,
T.
Kosub
,
D. D.
Sheka
,
D.
Makarov
, and
P.
Maletinsky
, “
Nanoscale mechanics of antiferromagnetic domain walls
,”
Nat. Phys.
17
,
574
577
(
2021
).
95.
S.
Maekawa
and
U.
Gafvert
, “
Electron tunneling between ferromagnetic films
,”
IEEE Trans. Magn.
18
,
707
708
(
1982
).
96.
C.
Henry La Blanchetais
, “
Contribution à l'étude de l'antiferromagnétisme. Etude thermomagnétique des protoxydes de cobalt et de nickel
,”
J. Phys. Radium
12
,
765
771
(
1951
).
97.
P. W.
Anderson
, “
Antiferromagnetism. Theory of superexchange interaction
,”
Phys. Rev.
79
,
350
356
(
1950
).
98.
F.
Keffer
and
W.
O'Sullivan
, “
Problem of spin arrangements in MnO and similar antiferromagnets
,”
Phys. Rev.
108
,
637
644
(
1957
).
99.
M. T.
Hutchings
and
E. J.
Samuelsen
, “
Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties
,”
Phys. Rev. B
6
,
3447
3461
(
1972
).
100.
H. P.
Rooksby
, “
A note on the structure of nickel oxide at subnormal and elevated temperatures
,”
Acta Crystallogr.
1
,
226
226
(
1948
).
101.
W. L.
Roth
and
G. A.
Slack
, “
Antiferromagnetic structure and domains in single crystal NiO
,”
J. Appl. Phys.
31
,
S352
S353
(
1960
).
102.
C. G.
Shull
,
W. A.
Strauser
, and
E. O.
Wollan
, “
Neutron diffraction by paramagnetic and antiferromagnetic substances
,”
Phys. Rev.
83
,
333
345
(
1951
).
103.
J. S.
Smart
and
S.
Greenwald
, “
Crystal structure transitions in antiferromagnetic compounds at the Curie temperature
,”
Phys. Rev.
82
,
113
114
(
1951
).
104.
J. S.
Smart
, “
Molecular field treatment of ferromagnetism and antiferromagnetism
,”
Phys. Rev.
86
,
968
974
(
1952
).
105.
T.
Yamada
, “
Antiferromagnetic domain walls in nickel oxide
,”
J. Phys. Soc. Jpn.
18
,
520
530
(
1963
).
106.
T.
Yamada
, “
Spin configuration in antiferromagnetic domain walls of the NiO-type crystals
,”
J. Phys. Soc. Jpn.
21
,
650
664
(
1966
).
107.
G. A.
Slack
, “
Crystallography and domain walls in antiferromagnetic NiO crystals
,”
J. Appl. Phys.
31
,
1571
1582
(
1960
).
108.
T.
Yamada
, “
Magnetic anisotropy, magnetostriction, and magnetic domain walls in NiO. I. Theory
,”
J. Phys. Soc. Jpn.
21
,
664
671
(
1966
).
109.
T.
Yamada
,
S.
Saito
, and
Y.
Shimomura
, “
Magnetic anisotropy, magnetostriction, and magnetic domain walls in NiO. II. Experiment
,”
J. Phys. Soc. Jpn.
21
,
672
680
(
1966
).
110.
J.
Baruchel
,
M.
Schlenker
,
K.
Kurosawa
, and
S.
Saito
, “
Antiferromagnetic S-domains in NiO I. Neutron magnetic topographic investigation
,”
Philos. Mag. B
43
,
853
860
(
1981
).
111.
W.
Kleemann
,
F. J.
Schäfer
, and
D. S.
Tannhauser
, “
Linear birefringence in S-domains of NiO near the antiferromagnetic phase transition
,”
J. Magn. Magn. Mater.
15–18
,
415
416
(
1980
).
112.
N. B.
Weber
,
H.
Ohldag
,
H.
Gomonaj
, and
F. U.
Hillebrecht
, “
Magnetostrictive domain walls in antiferromagnetic NiO
,”
Phys. Rev. Lett.
91
,
237205
(
2003
).
113.
K.
Arai
,
T.
Okuda
,
A.
Tanaka
,
M.
Kotsugi
,
K.
Fukumoto
,
T.
Ohkochi
,
T.
Nakamura
,
T.
Matsushita
,
T.
Muro
,
M.
Oura
,
Y.
Senba
,
H.
Ohashi
,
A.
Kakizaki
,
C.
Mitsumata
, and
T.
Kinoshita
, “
Three-dimensional spin orientation in antiferromagnetic domain walls of NiO studied by x-ray magnetic linear dichroism photoemission electron microscopy
,”
Phys. Rev. B
85
,
104418
(
2012
).
114.
R.
Street
and
B.
Lewis
, “
Anomalous variation of Young's modulus of antiferromagnetics at the Neél point
,”
Nature
168
,
1036
1037
(
1951
).
115.
S.
Mandal
,
K. S. R.
Menon
,
F.
Maccherozzi
, and
R.
Belkhou
, “
Strain-induced nonequilibrium magnetoelastic domain structure and spin reorientation of NiO(100)
,”
Phys. Rev. B
80
,
184408
(
2009
).
116.
K.
Kurosawa
,
S.
Saito
, and
S.
Takemoto
, “
Antiferromagnetic domain structures in vapour-grown NiO (111) platelets containing growth twins
,”
Jpn. J. Appl. Phys., Part 1
13
,
804
811
(
1974
).
117.
V.
Mandel
, “
Twin domains in nickel-oxide type crystals
,”
J. Cryst. Growth
174
,
346
353
(
1997
).
118.
C.
Giovanardi
,
A.
di Bona
,
S.
Altieri
,
P.
Luches
,
M.
Liberati
,
F.
Rossi
, and
S.
Valeri
, “
Structure and morphology of ultrathin NiO layers on Ag(001)
,”
Thin Solid Films
428
,
195
200
(
2003
).
119.
Y. Z.
Wu
,
Y.
Zhao
,
E.
Arenholz
,
A. T.
Young
,
B.
Sinkovic
,
C.
Won
, and
Z. Q.
Qiu
, “
Analysis of x-ray linear dichroism spectra for NiO thin films grown on vicinal Ag(001)
,”
Phys. Rev. B
78
,
064413
(
2008
).
120.
L.
Myoungjae
,
S.
Sunae
,
D.
Seo
,
J.
Eunju
, and
I. K.
Yoo
, “
Properties of nickel oxide films by DC reactive sputtering
,”
Integr. Ferroelectr.
68
,
19
25
(
2004
).
121.
M.
Finazzi
,
L.
Duò
, and
F.
Ciccacci
, “
Magnetic properties of interfaces and multilayers based on thin antiferromagnetic oxide films
,”
Surf. Sci. Rep.
64
,
139
167
(
2009
).
122.
S.
Saito
, “
X-ray diffraction micrography on the twin structure of antiferromagnetic nickel oxide
,”
J. Phys. Soc. Jpn.
17
,
1287
1299
(
1962
).
123.
C.
Schmitt
,
L.
Baldrati
,
L.
Sanchez-Tejerina
,
F.
Schreiber
,
A.
Ross
,
M.
Filianina
,
S.
Ding
,
F.
Fuhrmann
,
R.
Ramos
,
F.
Maccherozzi
,
D.
Backes
,
M. A.
Mawass
,
F.
Kronast
,
S.
Valencia
,
E.
Saitoh
,
G.
Finocchio
, and
M.
Kläui
, “
Identification of Néel vector orientation in antiferromagnetic domains switched by currents in NiO/Pt thin films
,”
Phys. Rev. Appl.
15
,
034047
(
2021
).
124.
C.
Schmitt
,
L.
Sanchez-Tejerina
,
M.
Filianina
,
F.
Fuhrmann
,
H.
Meer
,
R.
Ramos
,
F.
Maccherozzi
,
D.
Backes
,
E.
Saitoh
,
G.
Finocchio
,
L.
Baldrati
, and
M.
Kläui
, “
Identifying the domain wall spin structure in current-induced switching of antiferromagnetic NiO/Pt
,” arXiv:2209.02040 (
2022
).
125.
J.
Kanamori
, “
Theory of the magnetic properties of ferrous and cobaltous oxides, I
,”
Prog. Theor. Phys.
17
,
177
196
(
1957
).
126.
G.
Ghiringhelli
,
L. H.
Tjeng
,
A.
Tanaka
,
O.
Tjernberg
,
T.
Mizokawa
,
J. L.
de Boer
, and
N. B.
Brookes
, “
3d spin-orbit photoemission spectrum of nonferromagnetic materials: The test cases of CoO and Cu
,”
Phys. Rev. B
66
,
075101
(
2002
).
127.
N. C.
Tombs
and
H. P.
Rooksby
, “
Structure of monoxides of some transition elements at low temperatures
,”
Nature
165
,
442
443
(
1950
).
128.
S.
Greenwald
and
J. S.
Smart
, “
Deformations in the crystal structures of anti-ferromagnetic compounds
,”
Nature
166
,
523
524
(
1950
).
129.
Y. Y.
Li
, “
Magnetic moment arrangements and magnetocrystalline deformations in antiferromagnetic compounds
,”
Phys. Rev.
100
,
627
631
(
1955
).
130.
W.
Jauch
,
M.
Reehuis
,
H. J.
Bleif
,
F.
Kubanek
, and
P.
Pattison
, “
Crystallographic symmetry and magnetic structure of CoO
,”
Phys. Rev. B
64
,
052102
(
2001
).
131.
W. L.
Roth
, “
Magnetic structures of MnO, FeO, CoO, and NiO
,”
Phys. Rev.
110
,
1333
1341
(
1958
).
132.
T.
Nagamiya
and
K.
Motizuki
, “
Theory of the magnetic scattering of neutrons by CoO
,”
Rev. Mod. Phys.
30
,
89
93
(
1958
).
133.
B.
van Laar
, “
Multi-spin-axis structure for CoO
,”
Phys. Rev.
138
,
A584
A587
(
1965
).
134.
B.
van Laar
, “
A new interpretation of magnetic anisotropy measurement on CoO single crystals
,”
J. Phys. Soc. Jpn.
20
,
1282
1283
(
1965
).
135.
B.
van Laar
,
J.
Schweizer
, and
R.
Lemaire
, “
Neutron-diffraction investigation of CoO single crystals
,”
Phys. Rev.
141
,
538
540
(
1966
).
136.
J.
Kanamori
, “
Theory of the magnetic properties of ferrous and cobaltous oxides, II
,”
Prog. Theor. Phys.
17
,
197
222
(
1957
).
137.
S.
Saito
,
K.
Nakahigashi
, and
Y.
Shimomura
, “
X-ray diffraction study on CoO
,”
J. Phys. Soc. Jpn.
21
,
850
860
(
1966
).
138.
T.
Nagamiya
,
S.
Saito
,
Y.
Shimomura
, and
E.
Uchida
, “
Magnetic structure of CoO
,”
J. Phys. Soc. Jpn.
20
,
1285
1286
(
1965
).
139.
D.
Herrmann-Ronzaud
,
P.
Burlet
, and
J.
Rossat-Mignod
, “
Equivalent type-II magnetic structures: CoO, a collinear antiferromagnet
,”
J. Phys. C
11
,
2123
2137
(
1978
).
140.
K. H.
Germann
,
K.
Maier
, and
E.
Strauss
, “
Linear magnetic birefringence in transition metal oxides: CoO
,”
Phys. Status Solidi
61
,
449
454
(
1974
).
141.
O.
Nakanishi
and
T.
Yamada
, “
Magnetic anisotropy from exchange interaction and magnetic structure of CoO
,”
J. Phys. Soc. Jpn.
36
,
1315
1321
(
1974
).
142.
K.
Tomiyasu
,
T.
Inami
, and
N.
Ikeda
, “
Magnetic structure of CoO studied by neutron and synchrotron x-ray diffraction
,”
Phys. Rev. B
70
,
184411
(
2004
).
143.
E.
Krüger
, “
Magnetic structure of CoO
,”
Symmetry
13
,
1513
(
2021
).
144.
E.
Krüger
, “
Magnetic bands producing a monoclinic magnetic structure in NiO, FeO, MnO, and a tetragonal one in CoO
,”
Symmetry
14
,
1285
(
2022
).
145.
E.
Uchida
,
N.
Fukuoka
,
H.
Kondoh
,
T.
Takeda
,
Y.
Nakazumi
, and
T.
Nagamiya
, “
Magnetic anisotropy measurements of CoO single crystal
,”
J. Phys. Soc. Jpn.
19
,
2088
2095
(
1964
).
146.
M. D.
Rechtin
and
B. L.
Averbach
, “
Tetragonal elongation in CoO near the Néel point
,”
Phys. Rev. Lett.
26
,
1483
1485
(
1971
).
147.
Q.
Li
,
T.
Gu
,
J.
Zhu
,
Z.
Ding
,
J. X.
Li
,
J. H.
Liang
,
Y. M.
Luo
,
Z.
Hu
,
C. Y.
Hua
,
H.-J.
Lin
,
T. W.
Pi
,
C.
Won
, and
Y. Z.
Wu
, “
Multiple in-plane spin reorientation transitions in Fe/CoO bilayers grown on vicinal MgO(001)
,”
Phys. Rev. B
91
,
104424
(
2015
).
148.
S. I.
Csiszar
,
M. W.
Haverkort
,
Z.
Hu
,
A.
Tanaka
,
H. H.
Hsieh
,
H.-J.
Lin
,
C. T.
Chen
,
T.
Hibma
, and
L. H.
Tjeng
, “
Controlling orbital moment and spin orientation in CoO layers by strain
,”
Phys. Rev. Lett.
95
,
187205
(
2005
).
149.
J.
Zhu
,
Q.
Li
,
J. X.
Li
,
Z.
Ding
,
C. Y.
Hua
,
M. J.
Huang
,
H.-J.
Lin
,
Z.
Hu
,
C.
Won
, and
Y. Z.
Wu
, “
Strain-modulated antiferromagnetic spin orientation and exchange coupling in Fe/CoO(001)
,”
J. Appl. Phys.
115
,
193903
(
2014
).
150.
J.
Zhu
,
Q.
Li
,
J. X.
Li
,
Z.
Ding
,
J. H.
Liang
,
X.
Xiao
,
Y. M.
Luo
,
C. Y.
Hua
,
H. J.
Lin
,
T. W.
Pi
,
Z.
Hu
,
C.
Won
, and
Y. Z.
Wu
, “
Antiferromagnetic spin reorientation transition in epitaxial NiO/CoO/MgO(001) systems
,”
Phys. Rev. B
90
,
054403
(
2014
).
151.
L.
Baldrati
,
C.
Schmitt
,
O.
Gomonay
,
R.
Lebrun
,
R.
Ramos
,
E.
Saitoh
,
J.
Sinova
, and
M.
Kläui
, “
Efficient spin torques in antiferromagnetic CoO/Pt quantified by comparing field- and current-induced switching
,”
Phys. Rev. Lett.
125
,
077201
(
2020
).
152.
W. N.
Cao
,
J.
Li
,
G.
Chen
,
J.
Zhu
,
C. R.
Hu
, and
Y. Z.
Wu
, “
Temperature-dependent magnetic anisotropies in epitaxial Fe/CoO/MgO(001) system studied by the planar Hall effect
,”
Appl. Phys. Lett.
98
,
262506
(
2011
).
153.
Z.
Zheng
,
J. Y.
Shi
,
Q.
Li
,
T.
Gu
,
H.
Xia
,
L. Q.
Shen
,
F.
Jin
,
H. C.
Yuan
,
Y. Z.
Wu
,
L. Y.
Chen
, and
H. B.
Zhao
, “
Magneto-optical probe of ultrafast spin dynamics in antiferromagnetic CoO thin films
,”
Phys. Rev. B
98
,
134409
(
2018
).
154.
M. J.
Grzybowski
,
C. F.
Schippers
,
O.
Gomonay
,
K.
Rubi
,
M. E.
Bal
,
U.
Zeitler
,
B.
Koopmans
, and
H. J. M.
Swagten
, “
Antiferromagnetic hysteresis above the spin flop field
,” arXiv:2109.00093 (
2021
).
155.
P. M.
Sarte
,
S. D.
Wilson
,
J. P.
Attfield
, and
C.
Stock
, “
Magnetic fluctuations and the spin-orbit interaction in Mott insulating CoO
,”
J. Phys.: Condens. Matter
32
,
374011
(
2020
).
156.
H. V.
Gomonay
and
V. M.
Loktev
, “
Shape-induced phenomena in finite-size antiferromagnets
,”
Phys. Rev. B
75
,
174439
(
2007
).
157.
O.
Gomonay
,
S.
Kondovych
, and
V.
Loktev
, “
Shape-induced anisotropy in antiferromagnetic nanoparticles
,”
J. Magn. Magn. Mater.
354
,
125
135
(
2014
).
158.
E.
Folven
,
T.
Tybell
,
A.
Scholl
,
A.
Young
,
S. T.
Retterer
,
Y.
Takamura
, and
J. K.
Grepstad
, “
Antiferromagnetic domain reconfiguration in embedded LaFeO3 thin film nanostructures
,”
Nano Lett.
10
,
4578
4583
(
2010
).
159.
E.
Folven
,
A.
Scholl
,
A.
Young
,
S. T.
Retterer
,
J. E.
Boschker
,
T.
Tybell
,
Y.
Takamura
, and
J. K.
Grepstad
, “
Effects of nanostructuring and substrate symmetry on antiferromagnetic domain structure in LaFeO3 thin films
,”
Phys. Rev. B
84
,
220410
(
2011
).
160.
E.
Folven
,
Y.
Takamura
, and
J. K.
Grepstad
, “
X-PEEM study of antiferromagnetic domain patterns in LaFeO3 thin films and embedded nanostructures
,”
J. Electron Spectrosc. Relat. Phenom.
185
,
381
388
(
2012
).
161.
E.
Folven
,
A.
Scholl
,
A.
Young
,
S. T.
Retterer
,
J. E.
Boschker
,
T.
Tybell
,
Y.
Takamura
, and
J. K.
Grepstad
, “
Crossover from spin-flop coupling to collinear spin alignment in antiferromagnetic/ferromagnetic nanostructures
,”
Nano Lett.
12
,
2386
2390
(
2012
).
162.
H.
Meer
,
O.
Gomonay
,
C.
Schmitt
,
R.
Ramos
,
L.
Schnitzspan
,
F.
Kronast
,
M.-A.
Mawass
,
S.
Valencia
,
E.
Saitoh
,
J.
Sinova
,
L.
Baldrati
, and
M.
Kläui
, “
Strain-induced shape anisotropy in antiferromagnetic structures
,”
Phys. Rev. B
106
,
094430
(
2022
).
163.
Y.-T.
Chen
,
S.
Takahashi
,
H.
Nakayama
,
M.
Althammer
,
S. T. B.
Goennenwein
,
E.
Saitoh
, and
G. E. W.
Bauer
, “
Theory of spin Hall magnetoresistance
,”
Phys. Rev. B
87
,
144411
(
2013
).
164.
A.
Manchon
, “
Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers
,”
Phys. Status Solidi RRL
11
,
1600409
(
2017
).
165.
J. H.
Han
,
C.
Song
,
F.
Li
,
Y. Y.
Wang
,
G. Y.
Wang
,
Q. H.
Yang
, and
F.
Pan
, “
Antiferromagnet-controlled spin current transport in SrMnO3/Pt hybrids
,”
Phys. Rev. B
90
,
144431
(
2014
).
166.
D.
Hou
,
Z.
Qiu
,
J.
Barker
,
K.
Sato
,
K.
Yamamoto
,
S.
Vélez
,
J. M.
Gomez-Perez
,
L. E.
Hueso
,
F.
Casanova
, and
E.
Saitoh
, “
Tunable sign change of spin Hall magnetoresistance in Pt/NiO/YIG structures
,”
Phys. Rev. Lett.
118
,
147202
(
2017
).
167.
G. R.
Hoogeboom
,
A.
Aqeel
,
T.
Kuschel
,
T. T. M.
Palstra
, and
B. J.
van Wees
, “
Negative spin Hall magnetoresistance of Pt on the bulk easy-plane antiferromagnet NiO
,”
Appl. Phys. Lett.
111
,
052409
(
2017
).
168.
J.
Fischer
,
O.
Gomonay
,
R.
Schlitz
,
K.
Ganzhorn
,
N.
Vlietstra
,
M.
Althammer
,
H.
Huebl
,
M.
Opel
,
R.
Gross
,
S. T. B.
Goennenwein
, and
S.
Geprägs
, “
Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures
,”
Phys. Rev. B
97
,
014417
(
2018
).
169.
S.
Geprägs
,
M.
Opel
,
J.
Fischer
,
O.
Gomonay
,
P.
Schwenke
,
M.
Althammer
,
H.
Huebl
, and
R.
Gross
, “
Spin Hall magnetoresistance in antiferromagnetic insulators
,”
J. Appl. Phys.
127
,
243902
(
2020
).
170.
R.
Lebrun
,
A.
Ross
,
S. A.
Bender
,
A.
Qaiumzadeh
,
L.
Baldrati
,
J.
Cramer
,
A.
Brataas
,
R. A.
Duine
, and
M.
Kläui
, “
Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide
,”
Nature
561
,
222
225
(
2018
).
171.
W.
Zhang
,
M. B.
Jungfleisch
,
W.
Jiang
,
J. E.
Pearson
,
A.
Hoffmann
,
F.
Freimuth
, and
Y.
Mokrousov
, “
Spin Hall effects in metallic antiferromagnets
,”
Phys. Rev. Lett.
113
,
196602
(
2014
).
172.
H.
Wang
,
C.
Du
,
P. C.
Hammel
, and
F.
Yang
, “
Antiferromagnonic spin transport from Y3Fe5O12 into NiO
,”
Phys. Rev. Lett.
113
,
097202
(
2014
).
173.
C.
Hahn
,
G.
de Loubens
,
V. V.
Naletov
,
J.
Ben Youssef
,
O.
Klein
, and
M.
Viret
, “
Conduction of spin currents through insulating antiferromagnetic oxides
,”
Europhys. Lett.
108
,
57005
(
2014
).
174.
L.
Frangou
,
S.
Oyarzún
,
S.
Auffret
,
L.
Vila
,
S.
Gambarelli
, and
V.
Baltz
, “
Enhanced spin pumping efficiency in antiferromagnetic IrMn thin films around the magnetic phase transition
,”
Phys. Rev. Lett.
116
,
077203
(
2016
).
175.
J.
Cramer
,
F.
Fuhrmann
,
U.
Ritzmann
,
V.
Gall
,
T.
Niizeki
,
R.
Ramos
,
Z.
Qiu
,
D.
Hou
,
T.
Kikkawa
,
J.
Sinova
,
U.
Nowak
,
E.
Saitoh
, and
M.
Kläui
, “
Magnon detection using a ferroic collinear multilayer spin valve
,”
Nat. Commun.
9
,
1089
(
2018
).
176.
L.
Baldrati
,
C.
Schneider
,
T.
Niizeki
,
R.
Ramos
,
J.
Cramer
,
A.
Ross
,
E.
Saitoh
, and
M.
Kläui
, “
Spin transport in multilayer systems with fully epitaxial NiO thin films
,”
Phys. Rev. B
98
,
014409
(
2018
).
177.
W.
Lin
,
K.
Chen
,
S.
Zhang
, and
C. L.
Chien
, “
Enhancement of thermally injected spin current through an antiferromagnetic insulator
,”
Phys. Rev. Lett.
116
,
186601
(
2016
).
178.
Z.
Qiu
,
D.
Hou
,
J.
Barker
,
K.
Yamamoto
,
O.
Gomonay
, and
E.
Saitoh
, “
Spin colossal magnetoresistance in an antiferromagnetic insulator
,”
Nat. Mater.
17
,
577
580
(
2018
).
179.
S.
Das
,
A.
Ross
,
X. X.
Ma
,
S.
Becker
,
C.
Schmitt
,
F.
van Duijn
,
E. F.
Galindez-Ruales
,
F.
Fuhrmann
,
M.-A.
Syskaki
,
U.
Ebels
,
V.
Baltz
,
A.-L.
Barra
,
H. Y.
Chen
,
G.
Jakob
,
S. X.
Cao
,
J.
Sinova
,
O.
Gomonay
,
R.
Lebrun
, and
M.
Kläui
, “
Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3
,”
Nat. Commun.
13
,
6140
(
2022
).
180.
J.
Han
,
P.
Zhang
,
Z.
Bi
,
Y.
Fan
,
T. S.
Safi
,
J.
Xiang
,
J.
Finley
,
L.
Fu
,
R.
Cheng
, and
L.
Liu
, “
Birefringence-like spin transport via linearly polarized antiferromagnetic magnons
,”
Nat. Nanotechnol.
15
,
563
568
(
2020
).
181.
T.
Wimmer
,
A.
Kamra
,
J.
Gückelhorn
,
M.
Opel
,
S.
Geprägs
,
R.
Gross
,
H.
Huebl
, and
M.
Althammer
, “
Observation of antiferromagnetic magnon pseudospin dynamics and the Hanle effect
,”
Phys. Rev. Lett.
125
,
247204
(
2020
).
182.
S. Y.
Bodnar
,
L.
Šmejkal
,
I.
Turek
,
T.
Jungwirth
,
O.
Gomonay
,
J.
Sinova
,
A. A.
Sapozhnik
,
H.-J.
Elmers
,
M.
Kläui
, and
M.
Jourdan
, “
Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance
,”
Nat. Commun.
9
,
348
(
2018
).
183.
T.
Shiino
,
S.-H.
Oh
,
P. M.
Haney
,
S.-W.
Lee
,
G.
Go
,
B.-G.
Park
, and
K.-J.
Lee
, “
Antiferromagnetic domain wall motion driven by spin-orbit torques
,”
Phys. Rev. Lett.
117
,
087203
(
2016
).
184.
O.
Gomonay
,
T.
Jungwirth
, and
J.
Sinova
, “
High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques
,”
Phys. Rev. Lett.
117
,
017202
(
2016
).
185.
L.
Baldrati
,
O.
Gomonay
,
A.
Ross
,
M.
Filianina
,
R.
Lebrun
,
R.
Ramos
,
C.
Leveille
,
F.
Fuhrmann
,
T. R.
Forrest
,
F.
Maccherozzi
,
S.
Valencia
,
F.
Kronast
,
E.
Saitoh
,
J.
Sinova
, and
M.
Kläui
, “
Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging
,”
Phys. Rev. Lett.
123
,
177201
(
2019
).
186.
X. Z.
Chen
,
R.
Zarzuela
,
J.
Zhang
,
C.
Song
,
X. F.
Zhou
,
G. Y.
Shi
,
F.
Li
,
H. A.
Zhou
,
W. J.
Jiang
,
F.
Pan
, and
Y.
Tserkovnyak
, “
Antidamping-torque-induced switching in biaxial antiferromagnetic insulators
,”
Phys. Rev. Lett.
120
,
207204
(
2018
).
187.
T.
Moriyama
,
K.
Oda
,
T.
Ohkochi
,
M.
Kimata
, and
T.
Ono
, “
Spin torque control of antiferromagnetic moments in NiO
,”
Sci. Rep.
8
,
14167
(
2018
).
188.
I.
Gray
,
T.
Moriyama
,
N.
Sivadas
,
G. M.
Stiehl
,
J. T.
Heron
,
R.
Need
,
B. J.
Kirby
,
D. H.
Low
,
K. C.
Nowack
,
D. G.
Schlom
,
D. C.
Ralph
,
T.
Ono
, and
G. D.
Fuchs
, “
Spin Seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructures
,”
Phys. Rev. X
9
,
041016
(
2019
).
189.
Y.
Cheng
,
S.
Yu
,
M.
Zhu
,
J.
Hwang
, and
F.
Yang
, “
Electrical switching of tristate antiferromagnetic Néel order in α-Fe2O3 epitaxial films
,”
Phys. Rev. Lett.
124
,
027202
(
2020
).
190.
E.
Cogulu
,
N. N.
Statuto
,
Y.
Cheng
,
F.
Yang
,
R. V.
Chopdekar
,
H.
Ohldag
, and
A. D.
Kent
, “
Direct imaging of electrical switching of antiferromagnetic Néel order in α-Fe2O3 epitaxial films
,”
Phys. Rev. B
103
,
L100405
(
2021
).
191.
T.
Matalla-Wagner
,
J.-M.
Schmalhorst
,
G.
Reiss
,
N.
Tamura
, and
M.
Meinert
, “
Resistive contribution in electrical-switching experiments with antiferromagnets
,”
Phys. Rev. Res.
2
,
033077
(
2020
).
192.
C. C.
Chiang
,
S. Y.
Huang
,
D.
Qu
,
P. H.
Wu
, and
C. L.
Chien
, “
Absence of evidence of electrical switching of the antiferromagnetic Néel vector
,”
Phys. Rev. Lett.
123
,
227203
(
2019
).
193.
A.
Churikova
,
D.
Bono
,
B.
Neltner
,
A.
Wittmann
,
L.
Scipioni
,
A.
Shepard
,
T.
Newhouse-Illige
,
J.
Greer
, and
G. S. D.
Beach
, “
Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers
,”
Appl. Phys. Lett.
116
,
022410
(
2020
).
194.
P.
Zhang
,
J.
Finley
,
T.
Safi
, and
L.
Liu
, “
Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film
,”
Phys. Rev. Lett.
123
,
247206
(
2019
).
195.
G.
Lefkidis
and
W.
Hübner
, “
First-principles study of ultrafast magneto-optical switching in NiO
,”
Phys. Rev. B
76
,
014418
(
2007
).
196.
T.
Dannegger
,
M.
Berritta
,
K.
Carva
,
S.
Selzer
,
U.
Ritzmann
,
P. M.
Oppeneer
, and
U.
Nowak
, “
Ultrafast coherent all-optical switching of an antiferromagnet with the inverse Faraday effect
,”
Phys. Rev. B
104
,
L060413
(
2021
).
197.
N. P.
Duong
,
T.
Satoh
, and
M.
Fiebig
, “
Ultrafast manipulation of antiferromagnetism of NiO
,”
Phys. Rev. Lett.
93
,
117402
(
2004
).
198.
M.
Fiebig
,
N. P.
Duong
,
T.
Satoh
,
B. B.
Van Aken
,
K.
Miyano
,
Y.
Tomioka
, and
Y.
Tokura
, “
Ultrafast magnetization dynamics of antiferromagnetic compounds
,”
J. Phys. D
41
,
164005
(
2008
).
199.
T.
Satoh
,
S.-J.
Cho
,
R.
Iida
,
T.
Shimura
,
K.
Kuroda
,
H.
Ueda
,
Y.
Ueda
,
B. A.
Ivanov
,
F.
Nori
, and
M.
Fiebig
, “
Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light
,”
Phys. Rev. Lett.
105
,
077402
(
2010
).
200.
J.
Nishitani
,
T.
Nagashima
, and
M.
Hangyo
, “
Coherent control of terahertz radiation from antiferromagnetic magnons in NiO excited by optical laser pulses
,”
Phys. Rev. B
85
,
174439
(
2012
).
201.
H.
Qiu
,
L.
Zhou
,
C.
Zhang
,
J.
Wu
,
Y.
Tian
,
S.
Cheng
,
S.
Mi
,
H.
Zhao
,
Q.
Zhang
,
D.
Wu
,
B.
Jin
,
J.
Chen
, and
P.
Wu
, “
Ultrafast spin current generated from an antiferromagnet
,”
Nat. Phys.
17
,
388
394
(
2021
).
202.
T.
Higuchi
and
M.
Kuwata-Gonokami
, “
Control of antiferromagnetic domain distribution via polarization-dependent optical annealing
,”
Nat. Commun.
7
,
10720
(
2016
).
203.
D.
Bossini
,
M.
Pancaldi
,
L.
Soumah
,
M.
Basini
,
F.
Mertens
,
M.
Cinchetti
,
T.
Satoh
,
O.
Gomonay
, and
S.
Bonetti
, “
Ultrafast amplification and nonlinear magnetoelastic coupling of coherent magnon modes in an antiferromagnet
,”
Phys. Rev. Lett.
127
,
077202
(
2021
).
204.
T.
Satoh
,
R.
Iida
,
T.
Higuchi
,
Y.
Fujii
,
A.
Koreeda
,
H.
Ueda
,
T.
Shimura
,
K.
Kuroda
,
V. I.
Butrim
, and
B. A.
Ivanov
, “
Excitation of coupled spin–orbit dynamics in cobalt oxide by femtosecond laser pulses
,”
Nat. Commun.
8
,
638
(
2017
).
205.
S.
Wust
,
C.
Seibel
,
H.
Meer
,
P.
Herrgen
,
C.
Schmitt
,
L.
Baldrati
,
R.
Ramos
,
T.
Kikkawa
,
E.
Saitoh
,
O.
Gomonay
,
J.
Sinova
,
Y.
Mokrousov
,
H. C.
Schneider
,
M.
Kläui
,
B.
Rethfeld
,
B.
Stadtmüller
, and
M.
Aeschlimann
, “
Indirect optical manipulation of the antiferromagnetic order of insulating NiO by ultrafast interfacial energy transfer
,” arXiv:2205.02686 (
2022
).
206.
E.
Rongione
,
O.
Gueckstock
,
M.
Mattern
,
O.
Gomonay
,
H.
Meer
,
C.
Schmitt
,
R.
Ramos
,
E.
Saitoh
,
J.
Sinova
,
H.
Jaffrès
,
M.
Mičica
,
J.
Mangeney
,
S. T. B.
Goennenwein
,
S.
Geprägs
,
T.
Kampfrath
,
M.
Kläui
,
M.
Bargheer
,
T. S.
Seifert
,
S.
Dhillon
, and
R.
Lebrun
, “
Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin-phonon interactions
,” arXiv:2205.11965 (
2022
).
207.
H.
Meer
,
S.
Wust
,
C.
Schmitt
,
P.
Herrgen
,
F.
Fuhrmann
,
S.
Hirtle
,
B.
Bednarz
,
A.
Rajan
,
R.
Ramos
,
M. A.
Niño
,
M.
Foerster
,
F.
Kronast
,
A.
Kleibert
,
B.
Rethfeld
,
E.
Saitoh
,
B.
Stadtmüller
,
M.
Aeschlimann
, and
M.
Kläui
, “
All-optical switching of antiferromagnetic NiO thin films
,” Adv. Funct. Mater. (in press); arXiv:2210.11009.
208.
P.
Stremoukhov
,
D.
Carl S
,
A.
Safin
,
S.
Nikitov
, and
A.
Kirilyuk
, “
Phononic manipulation of antiferromagnetic domains in NiO
,”
New J. Phys.
24
,
023009
(
2022
).
209.
T.
Chirac
,
J.-Y.
Chauleau
,
P.
Thibaudeau
,
O.
Gomonay
, and
M.
Viret
, “
Ultrafast antiferromagnetic switching in NiO induced by spin transfer torques
,”
Phys. Rev. B
102
,
134415
(
2020
).
210.
L.
Pellegrino
,
M.
Biasotti
,
E.
Bellingeri
,
C.
Bernini
,
A. S.
Siri
, and
D.
Marré
, “
All-oxide crystalline microelectromechanical systems: Bending the functionalities of transition-metal oxide thin films
,”
Adv. Mater.
21
,
2377
2381
(
2009
).
211.
A.
Bukharaev
,
A. K.
Zvezdin
,
A. P.
Pyatakov
, and
Y. K.
Fetisov
, “
Straintronics: A new trend in micro- and nanoelectronics and material science
,”
Usp. Fiz. Nauk
188
,
1288
1330
(
2018
).
212.
D.
Go
,
D.
Jo
,
H.-W.
Lee
,
M.
Kläui
, and
Y.
Mokrousov
, “
Orbitronics: Orbital currents in solids
,”
Europhys. Lett.
135
,
37001
(
2021
).
213.
T.
Dannegger
et al, “
Magnetic properties of hematite revealed by an ab initio parameterized spin model
,” arXiv:2301.13094 (
2023
).
You do not currently have access to this content.