Multifunctional and smart solar-blind photodetectors are of great significance for many applications, particularly for communications, optoelectronic circuits, and environmental risk monitoring. In this study, a wire-shaped photoanode of the solar-blind photoelectrochemical (PEC)-type photodetector based on an α-Ga2O3 nanorods/electrolyte solid/liquid heterojunction is realized. In photovoltaic devices, a junction generally comprises two different solid materials to facilitate the separation of photogenerated electron–hole pairs. Similarly, a solid/liquid junction is formed between the semiconductor and the electrolyte in a PEC photodetector. The apparent rectification characteristics of the dark current indicate that the energy bands bend at the α-Ga2O3 nanorods/electrolyte interface. The local electric field in the semiconductor effectively promotes the separation of carriers. The photodetectors exhibit a high light/dark current ratio (Ilight/Idark) of 68.7; fast rise and decay response times of 0.1 and 0.06 s, respectively; and a high responsivity of 11.2 mA/W (@230 nm) at zero bias. The wire-shaped photoanode is beneficial for realizing potential omnidirectional solar-blind detection.

1.
Y.
Li
,
T.
Tokizono
,
M.
Liao
,
M.
Zhong
,
Y.
Koide
,
I.
Yamada
, and
J.
Delaunay
,
Adv. Funct. Mater.
20
,
3972
(
2010
).
2.
E.
Monroy
,
F.
Omnes
, and
F.
Calle
,
Semicond. Sci. Technol.
18
,
R33
(
2003
).
3.
C. N.
Lin
,
Y. J.
Lu
,
X.
Yang
,
Y. Z.
Tian
,
C. J.
Gao
,
J. L.
Sun
,
L.
Dong
,
F.
Zhong
,
W. D.
Hu
, and
C. X.
Shan
,
Adv. Opt. Mater.
6
,
1800068
(
2018
).
4.
H.
Kind
,
H. Q.
Yan
,
B.
Messer
,
M.
Law
, and
P. D.
Yang
,
Adv. Mater.
14
,
158
(
2002
).
5.
V. A.
Shepelev
,
A. A.
Altukhov
,
E. V.
Gladchenkov
,
A. V.
Popov
,
T. B.
Teplova
,
V. S.
Feshchenko
, and
A. O.
Zhukov
,
Russ. Eng. Res.
37
,
273
(
2017
).
6.
T. Y.
Zhai
,
L.
Li
,
X.
Wang
,
X. S.
Fang
,
Y.
Bando
, and
D.
Golberg
,
Adv. Funct. Mater.
20
,
4233
(
2010
).
7.
W.
Zheng
,
R.
Lin
,
Y.
Zhu
,
Z.
Zhang
,
X.
Ji
, and
F.
Huang
,
ACS Appl. Mater. Interfaces
10
,
20696
(
2018
).
8.
Y. Q.
Bie
,
Z. M.
Liao
,
H. Z.
Zhang
,
G. R.
Li
,
Y.
Ye
,
Y. B.
Zhou
,
J.
Xu
,
Z. X.
Qin
,
L.
Dai
, and
D. P.
Yu
,
Adv. Mater.
23
,
649
(
2011
).
9.
Y.
Yang
,
W.
Guo
,
J. J.
Qi
,
J.
Zhao
, and
Y.
Zhang
,
Appl. Phys. Lett.
97
,
223113
(
2010
).
10.
Z.
Huang
,
W.
Han
,
H.
Tang
,
L.
Ren
,
D. S.
Chander
,
X.
Qi
, and
H.
Zhang
,
2D Mater.
2
,
035011
(
2015
).
11.
H. J.
Fang
,
C.
Zheng
,
L. L.
Wu
,
Y.
Li
,
J.
Cai
,
M. X.
Hu
,
X. S.
Fang
,
R.
Ma
,
Q.
Wang
, and
H.
Wang
,
Adv. Funct. Mater.
29
,
1809013
(
2019
).
12.
A. G.
Wallace
and
M. D.
Symes
,
Joule
2
,
1390
(
2018
).
13.
W.
Song
,
J.
Chen
,
Z.
Li
, and
X.
Fang
,
Adv. Mater.
33
,
2101059
(
2021
).
14.
Z. R.
Zhu
,
K.
Wei
,
H.
Li
,
X. P.
Li
,
B. P.
Li
,
X. Y.
Gu
,
L. L.
Chen
,
J. Y.
Zhou
,
X. J.
Pan
, and
Y. Q.
Wang
,
J. Phys. D
54
,
095104
(
2021
).
15.
M. X.
Zhang
,
Y. Q.
Wang
,
F.
Teng
,
L. L.
Chen
,
J.
Li
,
J. Y.
Zhou
,
X. J.
Pan
, and
E. Q.
Xie
,
Mater. Lett.
162
,
117
(
2016
).
16.
J.
Nelson
and
R. E.
Chandler
,
Coord. Chem. Rev.
248
,
1181
(
2004
).
17.
M.
Gratzel
,
Nature
414
,
338
(
2001
).
18.
Z.
Pan
,
Y.
Li
,
X.
Hou
,
J.
Yan
, and
C.
Wang
,
Physica E
63
,
1
(
2014
).
19.
X.
Li
,
C.
Gao
,
H.
Duan
,
B.
Lu
,
Y.
Wang
,
L.
Chen
,
Z.
Zhang
,
X.
Pan
, and
E.
Xie
,
Small
9
,
2005
(
2013
).
20.
K.
Iwashina
,
A.
Iwase
,
H. N.
Yun
,
R.
Amal
, and
A.
Kudo
,
J. Am. Chem. Soc
137
,
604
(
2015
).
21.
K.
Wei
,
X. Y.
Gu
,
E. Z.
Chen
,
Y. Q.
Wang
,
Z.
Dai
,
Z. R.
Zhu
,
S. Q.
Kang
,
A. C.
Wang
,
X. P.
Gao
,
G. Z.
Sun
,
X. J.
Pan
,
J. Y.
Zhou
, and
E. Q.
Xie
,
J. Colloid Interface Sci.
583
,
24
(
2021
).
22.
F. H.
Teherani
,
D. C.
Look
,
D. J.
Rogers
,
A.
Hierro
,
G.
Tabares
,
M.
Lopez-Ponce
,
J. M.
Ulloa
,
A.
Kurtz
,
E.
Munoz
,
V.
MarínBorras
,
V.
Munoz-Sanjose
, and
J. M.
Chauveau
,
Proc. SPIE
9749
,
974901-1
(
2016
).
23.
C. Y.
Cho
,
Y.
Zhang
,
E.
Cicek
,
B.
Rahnema
,
Y.
Bai
,
R.
McClintock
, and
M.
Razeghi
,
Appl. Phys. Lett.
102
(
21
),
211110
(
2013
).
24.
Z.
Liu
,
D.
Zhao
,
J. P.
Ao
,
W.
Wang
,
X.
Chang
,
Y.
Wang
,
J.
Fu
, and
H. X.
Wang
,
Mater. Sci. Semicond. Process.
89
,
110
(
2019
).
25.
D. Y.
Guo
,
Z. P.
Wu
,
Y. H.
An
,
X. C.
Guo
,
X. L.
Chu
,
C. L.
Sun
,
L. H.
Li
,
P. G.
Li
, and
W. H.
Tang
,
Appl. Phys. Lett.
105
(
2
),
023507
(
2014
).
26.
C.
He
,
D.
Guo
,
K.
Chen
,
S.
Wang
,
J.
Shen
,
N.
Zhao
,
A.
Liu
,
Y.
Zheng
,
P.
Li
,
Z.
Wu
,
C.
Li
,
F.
Wu
, and
W.
Tang
,
ACS Appl. Nano Mater.
2
(
7
),
4095
(
2019
).
27.
Y.
Quan
,
D.
Fang
,
X.
Zhang
,
S.
Liu
, and
K.
Huang
,
Mater. Chem. Phys.
121
,
142
(
2010
).
28.
A. J.
Nozik
,
Philos. Trans. R. Soc. London, Ser. A
295
,
453
(
1980
).
29.
K.
Sun
,
Y.
Jing
,
C.
Li
,
X.
Zhang
,
R.
Aguinaldo
,
A.
Kargar
,
K.
Madsen
,
K.
Banu
,
Y.
Zhou
,
Y.
Bando
,
Z.
Liu
, and
D.
Wang
,
Nanoscale
4
,
1515
(
2012
).
30.
X.
Yang
,
A.
Wolcott
,
G.
Wang
,
A.
Sobo
,
R. C.
Fitzmorris
,
F.
Qian
,
J. Z.
Zhang
, and
Y.
Li
,
Nano Lett.
9
,
2331
(
2009
).
31.
G.
Wang
,
Z.
Bai
,
H.
Wu
,
X.
Zhang
,
J.
Li
,
M.
Jin
,
J.
Zhou
,
E.
Xie
, and
X.
Pan
,
Appl. Phys. Lett.
121
,
111101
(
2022
).

Supplementary Material

You do not currently have access to this content.