Resistive random-access memory (RRAM) devices have been widely studied for neuromorphic, in-memory computing. One of the most studied RRAM structures consists of a titanium capping layer and a HfOx adaptive oxide. Although these devices show promise in improving neuromorphic circuits, high variability, non-linearity, and asymmetric resistance changes limit their usefulness. Many studies have improved linearity by changing materials in or around the device, the circuitry, or the analog bias conditions. However, the impact of prior biasing conditions on the observed analog resistance change is not well understood. Experimental results in this study demonstrate that prior higher reset voltages used after forming cause a greater resistance change during subsequent identical analog pulsing. A multiphysics finite element model suggests that this greater analog resistance change is due to a higher concentration of oxygen ions stored in the titanium capping layer with increasing magnitude of the reset voltage. This work suggests that local ion concentration variations in the titanium capping layer of just tens of atoms cause significant resistance variation during analog operation.

1.
S.
Yu
,
W.
Shim
,
X.
Peng
, and
Y.
Luo
,
IEEE Trans. Circuits Syst. I
68
(
7
),
2753
(
2021
).
2.
S.
Yin
,
Y.
Kim
,
X.
Han
,
H.
Barnaby
,
S.
Yu
,
Y.
Luo
,
W.
He
,
X.
Sun
,
J. J.
Kim
, and
J. s.
Seo
,
IEEE Micro
39
(
6
),
54
(
2019
).
3.
S.
Shirinzadeh
,
M.
Soeken
,
P. E.
Gaillardon
, and
R.
Drechsler
,
IEEE Trans. Comput.-Aided. Des. Integr. Circuits Syst.
37
(
7
),
1422
(
2018
).
4.
V.
Milo
,
A.
Glukhov
,
E.
Pérez
,
C.
Zambelli
,
N.
Lepri
,
M. K.
Mahadevaiah
,
E. P. B.
Quesada
,
P.
Olivo
,
C.
Wenger
, and
D.
Ielmini
,
IEEE Trans. Electron Devices
68
(
8
),
3832
(
2021
).
5.
E. J.
Fuller
,
S. T.
Keene
,
A.
Melianas
,
Z.
Wang
,
S.
Agarwal
,
Y.
Li
,
Y.
Tuchman
,
C. D.
James
,
M. J.
Marinella
,
J. J.
Yang
,
A.
Salleo
, and
A. A.
Talin
,
Science
364
,
570
(
2019
).
6.
S.
Tang
,
S.
Yin
,
S.
Zheng
,
P.
Ouyang
,
F.
Tu
,
L.
Yao
,
J.
Wu
,
W.
Cheng
,
L.
Liu
, and
S.
Wei
, in
IEEE 6th Non-Volatile Memory Systems and Applications Symposium (NVMSA)
(
IEEE
,
2017
).
7.
H. Y.
Lee
,
P. S.
Chen
,
T. Y.
Wu
,
Y. S.
Chen
,
C. C.
Wang
,
P. J.
Tzeng
,
C. H.
Lin
,
F.
Chen
,
C. H.
Lien
, and
M. J.
Tsai
, in
IEEE International Electron Devices Meeting
(
IEEE
,
2008
).
8.
S. Z.
Rahaman
,
Y. D.
Lin
,
H. Y.
Lee
,
Y. S.
Chen
,
P. S.
Chen
,
W. S.
Chen
,
C. H.
Hsu
,
K. H.
Tsai
,
M. J.
Tsai
, and
P. H.
Wang
,
Langmuir
33
(
19
),
4654
(
2017
).
9.
P.
Basnet
,
D. G.
Pahinkar
,
M. P.
West
,
C. J.
Perini
,
S.
Graham
, and
E. M.
Vogel
,
J. Mater. Chem. C
8
,
5092
(
2020
).
10.
M. P.
West
,
P.
Basnet
,
D. G.
Pahinkar
,
R. H.
Montgomery
,
S.
Graham
, and
E. M.
Vogel
,
Appl. Phys. Lett.
116
(
6
),
063504
(
2020
).
11.
Z.
Fang
,
X. P.
Wang
,
J.
Sohn
,
B. B.
Weng
,
Z. P.
Zhang
,
Z. X.
Chen
,
Y. Z.
Tang
,
G. Q.
Lo
,
J.
Provine
,
S. S.
Wong
,
H. S. P.
Wong
, and
D. L.
Kwong
,
IEEE Electron Device Lett.
35
(
9
),
912
(
2014
).
12.
G.
Bersuker
,
D. C.
Gilmer
,
D.
Veksler
,
J.
Yum
,
H.
Park
,
S.
Lian
,
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
K.
McKenna
,
A.
Shluger
,
V.
Iglesias
,
M.
Porti
,
M.
Nafría
,
W.
Taylor
,
P. D.
Kirsch
, and
R.
Jammy
, in
International Electron Devices Meeting
(
IEEE
,
2010
).
13.
S.
Dirkmann
,
J.
Kaiser
,
C.
Wenger
, and
T.
Mussenbrock
,
ACS Appl. Mater. Interfaces
10
(
17
),
14857
(
2018
).
14.
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
G.
Broglia
,
G.
Ori
,
M.
Montorsi
,
G.
Bersuker
, and
P.
Pavan
, in
International Electron Devices Meeting
(
IEEE
,
2011
).
15.
S.
Menzel
,
U.
Böttger
,
M.
Wimmer
, and
M.
Salinga
,
Adv. Funct. Mater.
25
(
40
),
6306
(
2015
).
16.
S.
Yu
,
Proc. IEEE
106
(
2
),
260
(
2018
).
17.
M.
Zhao
,
H.
Wu
,
B.
Gao
,
Q.
Zhang
,
W.
Wu
,
S.
Wang
,
Y.
Xi
,
D.
Wu
,
N.
Deng
, and
S.
Yu
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2017
).
18.
Y.
Jeong
,
S.
Kim
, and
W. D.
Lu
,
Appl. Phys. Lett.
107
(
17
),
173105
(
2015
).
19.
W.
Wu
,
H.
Wu
,
B.
Gao
,
P.
Yao
,
X.
Zhang
,
X.
Peng
,
S.
Yu
, and
H.
Qian
, in
IEEE Symposium on VLSI Technology
(
IEEE
,
2018
).
20.
S.
Agarwal
,
S. J.
Plimpton
,
D. R.
Hughart
,
A. H.
Hsia
,
I.
Richter
,
J. A.
Cox
,
C. D.
James
, and
M. J.
Marinella
, in
International Joint Conference on Neural Networks (IJCNN)
,
2016
.
21.
W.
Wu
,
H.
Wu
,
B.
Gao
,
N.
Deng
,
S.
Yu
, and
H.
Qian
,
IEEE Electron Device Lett.
38
(
8
),
1019
(
2017
).
22.
P. Y.
Chen
,
B.
Lin
,
I. T.
Wang
,
T. H.
Hou
,
J.
Ye
,
S.
Vrudhula
,
J.
Seo
,
Y.
Cao
, and
S.
Yu
, in
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(
IEEE
,
2015
).
23.
K.
Moon
,
M.
Kwak
,
J.
Park
,
D.
Lee
, and
H.
Hwang
,
IEEE Electron Device Lett.
38
(
8
),
1023
(
2017
).
24.
F. F.
Athena
,
M. P.
West
,
P.
Basnet
,
J.
Hah
,
Q.
Jiang
,
W. C.
Lee
, and
E. M.
Vogel
,
J. Appl. Phys.
131
,
204901
(
2022
).
25.
D. G.
Pahinkar
,
P.
Basnet
,
M. P.
West
,
B.
Zivasatienraj
,
A.
Weidenbach
,
W. A.
Doolittle
,
E.
Vogel
, and
S.
Graham
,
AIP Adv.
10
(
3
),
035127
(
2020
).
26.
Y. T.
Su
,
K. C.
Chang
,
T. C.
Chang
,
T. M.
Tsai
,
R.
Zhang
,
J. C.
Lou
,
J. H.
Chen
,
T. F.
Young
,
K. H.
Chen
,
B. H.
Tseng
,
C. C.
Shih
,
Y. L.
Yang
,
M. C.
Chen
,
T. J.
Chu
,
C. H.
Pan
,
Y. E.
Syu
, and
S. M.
Sze
,
Appl. Phys. Lett.
103
(
16
),
163502
(
2013
).
27.
D. B.
Strukov
and
R. S.
Williams
,
Appl. Phys. A
94
(
3
),
515
(
2009
).
28.
A.
Kiejna
,
T.
Pabisiak
, and
S. W.
Gao
,
J. Phys.: Condens. Matter
18
(
17
),
4207
(
2006
).

Supplementary Material

You do not currently have access to this content.