Security is a critical issue in wireless communication due to the broadcast nature of the wireless environment; thus, physical-level secure wireless communication is of great importance in modern society, especially with the advent of the Internet-of-Things, fifth-generation, and beyond. In this Letter, we present an efficient scheme of physical-level secure wireless communication by exploring the reprogrammable metasurface excited with random signals at the transmission side (Alice) and the dual-receiver decoding method at the receiving side (Bob). To that end, the bit stream to be transferred is first encoded into the reprogrammable metasurface on the physical level, then the information-carrying metasurface is excited by a sequence of random radio signals; finally, Alice's information is retrieved by processing coherently the random signals acquired by two receivers at Bob. It is apparent that the eavesdropper (Eve) with a single antenna somewhere only receives the noise radiated from the metasurface and cannot decode the information correctly. Note that the reprogrammable metasurface with the time-space coding pattern shows the information-dependent radiation pattern, i.e., different noises in different directions. Therefore, our wireless communication method is also effective to the eavesdropper with multiple antennas. We implement a proof-of-principle system working at around 2.442 GHz and demonstrate experimentally that the proposed method enables to transmit the Mbps-rate bitstream. Our work will pave the way toward next-generation secure wireless communication.

1.
A.
Goldsmith
,
Wireless Communications
(
Cambridge University Press
,
2006
).
2.
A. D.
Wyner
, “
The wire-tap channel
,”
Bell Syst. Tech. J.
54
,
1355
1387
(
1975
).
3.
I.
Csiszar
and
J.
Korner
, “
Broadcast channels with confidential messages
,”
IEEE Trans. Inf. Theory
24
,
339
348
(
1978
).
4.
J. M.
Hamamreh
,
H. M.
Furqan
, and
H.
Arslan
, “
Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey
,”
IEEE Commun. Surv. Tutorials
21
,
1773
1828
(
2019
).
5.
H.-M.
Wang
,
M.
Luo
,
X.-G.
Xia
, and
Q.
Yin
, “
Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper's CSI
,”
IEEE Signal Process. Lett.
20
,
39
42
(
2013
).
6.
K.-H.
Park
,
T.
Wang
, and
M.-S.
Alouini
, “
On the jamming power allocation for secure amplify-and-forward relaying via cooperative jamming
,”
IEEE J. Sel. Areas Commun.
31
,
1741
1750
(
2013
).
7.
A.
Mukherjee
and
A. L.
Swindlehurst
, “
Robust beamforming for security in MIMO wiretap channels with imperfect CSI
,”
IEEE Trans. Signal Process.
59
,
351
361
(
2011
).
8.
R. M.
Yamada
,
A. O.
Steinhardt
, and
L.
Mili
, “
Beamforming for simultaneous energy and information transfer and physical-layer secrecy
,”
IEEE Trans. Wireless Commun.
16
,
8026
8036
(
2017
).
9.
X.
He
and
A.
Yener
, “
Secure degrees of freedom for Gaussian channels with interference: Structured codes outperform Gaussian signaling
,” in
Proceedings of IEEE Global Telecommunication Conference
(
IEEE
,
2009
), pp.
1
6
.
10.
0 Y.
Liu
,
J.
Li
, and
A. P.
Petropulu
, “
Destination assisted cooperative jamming for wireless physical-layer security
,”
IEEE Trans. Inf. Forensic Secur.
8
,
682
694
(
2013
).
11.
A.
Babakhani
,
D. B.
Rutledge
, and
A.
Hajimiri
, “
Transmitter architectures based on near-field direct antenna modulation
,”
IEEE J. Solid-State Circuits
43
,
2674
2692
(
2008
).
12.
S.
Venkatesh
,
X.
Lu
,
B.
Tanga
, and
K.
Sengupta
, “
Secure space-time-modulated millimetre-wave wireless links that are resilient to distributed eavesdropper attacks
,”
Nat. Electron.
4
,
827
(
2021
).
13.
M. F.
Imani
,
D. R.
Smith
, and
P.
del Hougne
, “
Perfect absorption in a disordered medium with programmable meta-atom inclusions
,”
Adv. Funct. Mater.
30
,
2005310
(
2020
).
14.
T. J.
Cui
,
M. Q.
Qi
,
X.
Wan
,
J.
Zhao
, and
Q.
Cheng
, “
Coding metamaterials, digital metamaterials and programmable metamaterials
,”
Light
3
,
e218
(
2014
).
15.
L.
Li
and
T. J.
Cui
, “
Information metamaterials–from effective media to real-time information processing systems
,”
Nanophotonics
8
,
703
724
(
2019
).
16.
L.
Li
,
T. J.
Cui
,
W.
Ji
,
S.
Liu
,
J.
Ding
,
X.
Wan
,
Y.
Li
,
M.
Jiang
,
C.
Qiu
, and
S.
Zhang
, “
Electromagnetic reprogrammable coding-metasurface holograms
,”
Nat. Commun.
8
,
197
(
2017
).
17.
P.
del Hougne
,
M. F.
Imani
,
A. V.
Diebold
,
R.
Horstmeyer
, and
D. R.
Smith
, “
Learned integrated sensing pipeline: Reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network
,”
Adv. Sci.
7
,
1901913
(
2020
).
18.
C.
Saigre-Tardif
,
R.
Faqiri
,
H.
Zhao
,
L.
Li
, and
P.
del Hougne
, “
Intelligent meta-imagers: From compressed to learned sensing
,”
Appl. Phys. Rev.
9
,
011314
(
2022
).
19.
L.
Li
,
H.
Ruan
,
C.
Liu
,
Y.
Li
,
Y.
Shuang
,
A.
Alu
,
C.
Qiu
, and
T. J.
Cui
, “
Machine-learning reprogrammable metasurface imager
,”
Nat. Commun.
10
,
1082
(
2019
).
20.
L.
Li
,
Y.
Shuang
,
Q.
MA
,
H.
Li
,
H.
Zhao
,
M.
Wei
,
C.
Liu
,
C.
Hao
,
C.
Qiu
, and
T. J.
Cui
, “
Intelligent metasurface imager and recognizer
,”
Light
8
,
97
(
2019
).
21.
H.
Li
,
H.
Zhao
,
M.
Wei
,
H.
Ruan
,
Y.
Shuang
,
T. J.
Cui
,
P.
del Hougne
, and
L.
Li
, “
Intelligent electromagnetic sensing with learnable data acquisition and processing
,”
Patterns
1
,
100006
(
2020
).
22.
L.
Zhang
,
X.
Chen
,
S.
Liu
,
Q.
Zhang
,
J.
Zhao
,
J.
Dai
,
G.
Bai
,
X.
Wan
,
Q.
Cheng
,
G.
Castaldi
,
V.
Galdi
, and
T. J.
Cui
, “
Space-time-coding digital metasurfaces
,”
Nat. Commun.
9
,
4334
(
2018
).
23.
H.
Zhao
,
Y.
Shuang
,
M.
Wei
,
T. J.
Cui
,
P.
del Hougne
, and
L.
Li
, “
Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals
,”
Nat. Commun.
11
,
3926
(
2020
).
24.
P.
del Hougne
and
G.
Lerosey
, “
Leveraging chaos for wave-based analog computation: Demonstration with indoor wireless communication signals
,”
Phys. Rev. X
8
,
041037
(
2018
).
25.
J.
Han
,
L.
Li
,
X.
Ma
,
X.
Gao
,
Y.
Mu
,
G.
Liao
,
Z.
Luo
, and
T. J.
Cui
, “
Adaptively smart wireless power transfer using 2-bit programmable metasurface
,”
IEEE Trans. Ind. Electron.
69
,
8524
8534
(
2022
).
26.
L.
Li
,
H.
Zhao
,
C.
Liu
,
L.
Li
, and
T. J.
Cui
, “
Intelligent metasurfaces: Control, communication and computing
,”
eLight
2
,
1
24
(
2022
).
27.
Y.
Shuang
,
H.
Zhao
,
M.
Wei
,
Q.
Cheng
,
S.
Jin
,
T.
Cui
,
P.
del Hougne
, and
L.
Li
, “
One-bit quantization is good for programmable coding metasurface
,”
Sci China Inf. Sci.
65
,
172301
(
2022
).
28.
E. W.
Forgy
, “
Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
,”
Biometrics
21
,
768
769
(
1965
).
29.
C. M.
Bishop
and
N. M.
Nasrabadi
,
Pattern Recognition and Machine Learning
(
Springer
,
2006
).
30.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).

Supplementary Material

You do not currently have access to this content.