Since the dawn of modern optics and electromagnetics, the optical prism is one of the most fascinating optical elements for refracting light. Exploiting its frequency dispersive behavior, a prism is able to refract different frequencies in different directions, realizing polychromatic light rainbows. Recently, thanks to their engineerable electromagnetic response, metamaterials have been exploited for achieving novel refractive scattering processes, going beyond the classical prism effects. In this Letter, we report on a rainbow-like scattering process taking place at the interface of a boundary-induced temporal metamaterial realized by instantaneously opening the boundary conditions of a parallel plate waveguide. Changing abruptly the conductivity of one of the two metallic plates, we demonstrate that an equivalent temporal interface between two different media is realized, and the monochromatic wave propagating into the waveguide gets scattered into a polychromatic rainbow in free space. We derive the relationships between the waveguide mode and the raising rainbow in terms of scattered amplitude and frequencies as a function of the elevation angle with respect to the waveguide axis. We apply the underlying physics to control the temporal rainbow by imposing a principal direction of scattering by design. Full-wave numerical simulations are performed for computing the rainbow temporal scattering and verifying the design guidelines for achieving controlled temporal rainbow scattering.

1.
I.
Newton
,
Opticks: Or, A Treatise of the Reflections, Refractions, Inflections and Colours of Light
(William Innys at the West-End of St. Paul’s,
1730
).
2.
T. A.
Morgado
,
J. S.
Marcos
,
J. T.
Costa
,
J. R.
Costa
,
C. A.
Fernandes
, and
M. G.
Silveirinha
, “
Reversed rainbow with a nonlocal metamaterial
,”
Appl. Phys. Lett.
105
(
26
),
264101
(
2014
).
3.
S.
Taravati
, “
Giant linear nonreciprocity, zero reflection, and zero band gap in equilibrated space-time-varying media
,”
Phys. Rev. Appl.
9
(
6
),
064012
(
2018
).
4.
S.
Taravati
and
A. A.
Kishk
, “
Advanced wave engineering via obliquely illuminated space-time-modulated slab
,”
IEEE Trans. Antennas Propag.
67
(
1
),
270
281
(
2019
).
5.
S.
Taravati
and
G. V.
Eleftheriades
, “
Programmable nonreciprocal meta-prism
,”
Sci. Rep.
11
(
1
),
7377
(
2021
).
6.
S.
Taravati
,
N.
Chamanara
, and
C.
Caloz
, “
Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator
,”
Phys. Rev. B
96
(
16
),
165144
(
2017
).
7.
V.
Pacheco-Peña
and
N.
Engheta
, “
Temporal aiming
,”
Light: Sci. Appl.
9
(
1
),
129
(
2020
).
8.
J.
Zhang
,
W. R.
Donaldson
,
G. P.
Agrawal
, and
G. P.
Agrawal
, “
Time-domain Fabry–Perot resonators formed inside a dispersive medium
,”
JOSA B
38
(
8
),
2376
2382
(
2021
).
9.
D.
Ramaccia
,
A.
Alù
,
A.
Toscano
, and
F.
Bilotti
, “
Propagation and scattering effects in metastructures based on temporal metamaterials
,” in
2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), New York, New York, 20-24 September 2021
(
IEEE
, 2021), pp.
356
358
.
10.
V.
Pacheco-Peña
and
N.
Engheta
, “
Antireflection temporal coatings
,”
Optica
7
(
4
),
323
(
2020
).
11.
D.
Ramaccia
,
A.
Toscano
, and
F.
Bilotti
, “
Light propagation through metamaterial temporal slabs: Reflection, refraction, and special cases
,”
Opt. Lett.
45
(
20
),
5836
(
2020
).
12.
D.
Ramaccia
,
A.
Alù
,
A.
Toscano
, and
F.
Bilotti
, “
Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials
,”
Appl. Phys. Lett.
118
(
10
),
101901
(
2021
).
13.
H.
Li
,
A.
Alù
, and
A.
Alù
, “
Temporal switching to extend the bandwidth of thin absorbers
,”
Optica
8
(
1
),
24
29
(
2021
).
14.
A. V.
Marini
,
D.
Ramaccia
,
A.
Toscano
, and
F.
Bilotti
, “
Perfect matching of reactive loads through complex frequencies: From circuital analysis to experiments
,”
IEEE Trans. Antennas Propag.
70
,
9641
(
2022
).
15.
S.
Yin
and
A.
Alù
, “
Efficient phase conjugation in a space-time leaky waveguide
,”
ACS Photonics
9
(
3
),
979
984
(
2022
).
16.
A.
Akbarzadeh
,
N.
Chamanara
, and
C.
Caloz
, “
Inverse prism based on temporal discontinuity and spatial dispersion
,”
Opt. Lett.
43
(
14
),
3297
(
2018
).
17.
F.
Miyamaru
,
C.
Mizuo
,
T.
Nakanishi
 et al, “
Ultrafast frequency-shift dynamics at temporal boundary induced by structural-dispersion switching of waveguides
,”
Phys. Rev. Lett.
127
(
5
),
053902
(
2021
).
18.
L.
Stefanini
,
S.
Yin
,
D.
Ramaccia
,
A.
Alù
,
A.
Toscano
, and
F.
Bilotti
, “
Temporal interfaces by instantaneously varying boundary conditions
,”
Phys. Rev. B
106
(
9
),
094312
(
2022
).
19.
S. J.
Orfanidis
,
Electromagnetic Waves and Antennas
(
Rutgers University
,
2016
). [Online]. https://www.ece.rutgers.edu/∼orfanidi/ewa/
20.
F. R.
Morgenthaler
, “
Velocity modulation of electromagnetic waves
,”
IRE Trans. Microwave Theory Tech.
6
(
2
),
167
172
(
1958
).
21.
Y.
Xiao
,
D. N.
Maywar
, and
G. P.
Agrawal
, “
Reflection and transmission of electromagnetic waves at a temporal boundary
,”
Opt. Lett.
39
(
3
),
574
577
(
2014
).
22.
C.
Caloz
and
Z. L.
Deck-Leger
, “
Spacetime metamaterials-part I: General concepts
,”
IEEE Trans. Antennas Propag.
68
(
3
),
1569
1582
(
2020
).
23.
C.
Caloz
and
Z. L.
Deck-Leger
, “
Spacetime metamaterials-part II: Theory and applications
,”
IEEE Trans. Antennas Propag.
68
(
3
),
1583
1598
(
2020
).
24.
R. E.
Collin
,
Field Theory of Guided Waves
, 2nd ed. (
Wiley-IEEE Press
,
1991
).
25.
H. P.
Langtangen
and
S.
Linge
,
Finite Difference Computing with PDEs
(
Springer Cham
,
2017
), Vol.
16
.
26.
O. Y.
Yermakov
,
D. V.
Permyakov
,
F. V.
Porubaev
 et al, “
Effective surface conductivity of optical hyperbolic metasurfaces: From far-field characterization to surface wave analysis
,”
Sci. Rep.
8
,
14135
(
2018
).
27.
Q.
He
,
S.
Sun
, and
L.
Zhou
, “
Tunable/reconfigurable metasurfaces: Physics and applications
,”
Research
2019
,
1
16
.

Supplementary Material

You do not currently have access to this content.