Carbon quantum dots (CDs) with favorable luminescent features for biphotonic applications have attracted much interest in modulating their photoluminescence (PL) efficiency. A surface state with various defects is believed to play a key role in the emissive intensity. Here, pressure-induced quenching of PL is observed in red emissive CDs (R-CDs) and is ascribed to defects in carbon cores upon compression. In the power-law fitting to the excitation power-dependent PL of R-CDs at high pressure, the coefficient k parameter related to the emissive mechanism decreases from 1 under ambient pressure to much less than 1 under the application of pressure, suggesting a transition from single exciton recombination to defect-related emission. With the k parameter decreasing to 0.69 at 1.6 GPa, the pressure-induced defects reduce the PL intensity by approximately one order of magnitude. Furthermore, the attenuation and broadening of the G band characterizing the sp2 hybrid structure of carbon cores in the Raman spectra for R-CDs at high pressure support that the pressure-induced lattice relaxation impairs the crystalline symmetry of the carbon core and results in the dramatic quenching of PL. Our results highlight the importance of the well-crystallized carbon core in designing CDs with high quantum yields.

1.
S.
Kanwal
,
F.
Mansoor
,
D.
Tu
,
R.
Li
,
W.
Zheng
,
S.
Lu
, and
X.
Chen
,
Nanoscale
14
(
36
),
13059
(
2022
).
2.
S. Y.
Lim
,
W.
Shen
, and
Z.
Gao
,
Chem. Soc. Rev.
44
(
1
),
362
(
2015
).
3.
C. L.
Shen
,
Q.
Lou
,
C. F.
Lv
,
J. H.
Zang
,
S. N.
Qu
,
L.
Dong
, and
C. X.
Shan
,
Adv. Sci.
6
(
11
),
1802331
(
2019
).
4.
L.
Rao
,
Y.
Tang
,
H.
Lu
,
S.
Yu
,
X.
Ding
,
K.
Xu
,
Z.
Li
, and
J. Z.
Zhang
,
Nanomaterials (Basel
)
8
(
11
),
900
(
2018
).
5.
K.
Hola
,
Y.
Zhang
,
Y.
Wang
,
E. P.
Giannelis
,
R.
Zboril
, and
A. L.
Rogach
,
Nano Today
9
(
5
),
590
(
2014
).
6.
Z. J.
Zhu
,
Y. L.
Zhai
,
Z. H.
Li
,
P. Y.
Zhu
,
S.
Mao
,
C. Z.
Zhu
,
D.
Du
,
L. A.
Belfiore
,
J. G.
Tang
, and
Y. H.
Lin
,
Mater. Today
30
,
52
(
2019
).
7.
D.
Xu
,
Q.
Lin
, and
H. T.
Chang
,
Small Methods
4
(
4
),
1900387
(
2020
).
8.
Z.
Wang
,
F.
Yuan
,
X.
Li
,
Y.
Li
,
H.
Zhong
,
L.
Fan
, and
S.
Yang
,
Adv. Mater.
29
(
37
),
1702910
(
2017
).
9.
E. T.
Vickers
,
T. A.
Graham
,
A. H.
Chowdhury
,
B.
Bahrami
,
B. W.
Dreskin
,
S.
Lindley
,
S. B.
Naghadeh
,
Q. Q.
Qiao
, and
J. Z.
Zhang
,
ACS Energy Lett.
3
(
12
),
2931
(
2018
).
10.
Y. P.
Sun
,
B.
Zhou
,
Y.
Lin
,
W.
Wang
,
K. A.
Fernando
,
P.
Pathak
,
M. J.
Meziani
,
B. A.
Harruff
,
X.
Wang
,
H.
Wang
,
P. G.
Luo
,
H.
Yang
,
M. E.
Kose
,
B.
Chen
,
L. M.
Veca
, and
S. Y.
Xie
,
J. Am. Chem. Soc.
128
(
24
),
7756
(
2006
).
11.
Y.
Dong
,
H.
Pang
,
H. B.
Yang
,
C.
Guo
,
J.
Shao
,
Y.
Chi
,
C. M.
Li
, and
T.
Yu
,
Angew. Chem. Int. Ed.
52
(
30
),
7800
(
2013
).
12.
L.
Bao
,
C.
Liu
,
Z. L.
Zhang
, and
D. W.
Pang
,
Adv. Mater.
27
(
10
),
1663
(
2015
).
13.
F.
Yuan
,
T.
Yuan
,
L.
Sui
,
Z.
Wang
,
Z.
Xi
,
Y.
Li
,
X.
Li
,
L.
Fan
,
Z.
Tan
,
A.
Chen
,
M.
Jin
, and
S.
Yang
,
Nat. Commun.
9
(
1
),
2249
(
2018
).
14.
Z.
Ma
,
Z.
Wang
,
M.
Teng
,
Z.
Xu
, and
X.
Jia
,
Chemphyschem
16
(
9
),
1811
(
2015
).
15.
Y.
Sagara
and
T.
Kato
,
Nat. Chem.
1
(
8
),
605
(
2009
).
16.
S.
Lu
,
G.
Xiao
,
L.
Sui
,
T.
Feng
,
X.
Yong
,
S.
Zhu
,
B.
Li
,
Z.
Liu
,
B.
Zou
,
M.
Jin
,
J. S.
Tse
,
H.
Yan
, and
B.
Yang
,
Angew. Chem. Int. Ed.
56
(
22
),
6187
(
2017
).
17.
C.
Liu
,
G.
Xiao
,
M.
Yang
,
B.
Zou
,
Z. L.
Zhang
, and
D. W.
Pang
,
Angew. Chem. Int. Ed.
57
(
7
),
1893
(
2018
).
18.
T.
Ye
,
P.
Cheng
,
H.
Zeng
,
D.
Yao
,
X.
Pan
,
H.
Jiang
, and
J.
Ding
,
J. Phys. Chem. Lett.
13
(
21
),
4768
(
2022
).
19.
P.
Jing
,
D.
Han
,
D.
Li
,
D.
Zhou
,
D.
Shen
,
G.
Xiao
,
B.
Zou
, and
S.
Qu
,
Nanoscale Horiz.
4
(
1
),
175
(
2019
).
20.
Q.
Wang
,
S. J.
Zhang
,
B. Y.
Wang
,
X. Y.
Yang
,
B.
Zou
,
B.
Yang
, and
S. Y.
Lu
,
Nanoscale Horiz.
4
(
5
),
1227
(
2019
).
21.
J. F.
Ding
,
T. T.
Ye
,
H. C.
Zhang
,
X.
Yang
,
H.
Zeng
,
C. G.
Zhang
, and
X. L.
Wang
,
Appl. Phys. Lett.
115
(
10
),
101902
(
2019
).
22.
G.
Zheng
,
T.
Wang
,
Q.
Lou
,
C.
Shen
,
M.
Wu
,
J.
Sun
,
W.
Ji
,
J.
Zang
,
K.
Liu
,
L.
Dong
, and
C.
Shan
,
J. Phys. Chem. Lett.
13
(
6
),
1587
(
2022
).
23.
D. Q.
Chen
,
W. W.
Wu
,
Y. J.
Yuan
,
Y.
Zhou
,
Z. Y.
Wan
, and
P.
Huang
,
J. Mater. Chem. C
4
(
38
),
9027
(
2016
).
24.
A. F.
Goncharov
,
I. N.
Makarenko
, and
S. M.
Stishov
,
High Pressure Res.
4
,
345
(
1990
).
25.
M.
Hanfland
,
K.
Syassen
, and
R.
Sonnenschein
,
Phys. Rev. B
40
(
3
),
1951
(
1989
).
26.
T.
Schmidt
,
K.
Lischka
, and
W.
Zulehner
,
Phys. Rev. B
45
(
16
),
8989
(
1992
).
27.
S. M.
Clark
,
K. J.
Jeon
,
J. Y.
Chen
, and
C. S.
Yoo
,
Solid State Commun.
154
(
1
),
15
(
2013
).
28.
S.
Wang
,
I. S.
Cole
,
D.
Zhao
, and
Q.
Li
,
Nanoscale
8
(
14
),
7449
(
2016
).
29.
Z.
Zhang
,
Y.
Pan
,
Y.
Fang
,
L.
Zhang
,
J.
Chen
, and
C.
Yi
,
Nanoscale
8
(
1
),
500
(
2016
).
30.
W. L.
Mao
,
H. K.
Mao
,
P. J.
Eng
,
T. P.
Trainor
,
M.
Newville
,
C. C.
Kao
,
D. L.
Heinz
,
J.
Shu
,
Y.
Meng
, and
R. J.
Hemley
,
Science
302
(
5644
),
425
(
2003
).
31.
J. Y.
Chen
,
M.
Kim
, and
C. S.
Yoo
,
Chem. Phys. Lett.
479
(
1–3
),
91
(
2009
).
32.
Y. M.
Long
,
C. H.
Zhou
,
Z. L.
Zhang
,
Z. Q.
Tian
,
L.
Bao
,
Y.
Lin
, and
D. W.
Pang
,
J. Mater. Chem.
22
(
13
),
5917
(
2012
).
33.
S. J.
Zhu
,
Y. B.
Song
,
X. H.
Zhao
,
J. R.
Shao
,
J. H.
Zhang
, and
B.
Yang
,
Nano Res.
8
(
2
),
355
(
2015
).
34.
K. J.
Mintz
,
Y.
Zhou
, and
R. M.
Leblanc
,
Nanoscale
11
(
11
),
4634
(
2019
).

Supplementary Material

You do not currently have access to this content.