Atomically thin MoSe2 is of interest from the perspective of estimating the layer-dependent material properties necessary for the translation of two-dimensional materials into devices. This work presents Raman spectroscopic protocols to determine a multitude of material parameters of two-dimensional MoSe2 films, including the layer thickness as well as the layer-dependent thermal conductivity, interlayer interactions, and anharmonicity. The Davydov splitting (factor-group splitting) observed in an out-of-plane A1g Raman mode, being layer-dependent in both the number and the peak positions, provides a method for estimating the number of layers. Furthermore, this work demonstrates the determination of the thermal conductivity (K) from the temperature-dependent Davydov split Raman modes of the multi-layers. The measurement of K by conventional methods is otherwise challenging for the micrometer sizes of the two-dimensional materials. The value of K thus determined increases significantly from 9 W m−1 K−1 for a four-layer thick MoSe2 film to 52 W m−1 K−1 for a monolayer. The diminishing effect of anharmonicity observed in the monolayer as compared to multi-layer MoSe2 supports the layer-dependent trend in the thermal conductivity. Overall, the findings are relevant for the applications of 2D MoSe2 in low power electronic, optoelectronic, and thermoelectric devices.

1.
P.
Tonndorf
,
R.
Schmidt
,
P.
Böttger
,
X.
Zhang
,
J.
Börner
,
A.
Liebig
,
M.
Albrecht
,
C.
Kloc
,
O.
Grdan
,
D. R. T.
Zahn
,
S.
Michaelis de Vasconcellos
, and
R.
Bratschitsch
,
Opt. Express
21
,
4908
(
2013
).
2.
S.
Tongay
,
J.
Zhou
,
C.
Ataca
,
K.
Lo
,
T. S.
Matthews
,
J.
Li
,
J. C.
Grossman
, and
J.
Wu
,
Nano Lett.
12
,
5576
(
2012
).
3.
J.
Zhou
,
C.
Jin
,
J. H.
Seol
,
X.
Li
, and
L.
Shi
,
Appl. Phys. Lett.
87
,
133109
(
2005
).
4.
I.
Jo
,
M. T.
Pettes
,
E.
Ou
,
W.
Wu
, and
L.
Shi
,
Appl. Phys. Lett.
104
,
201902
(
2014
).
5.
A. N.
Obraztsov
,
Semiconductors
31
,
534
(
1997
).
6.
S.
Périchon
,
V.
Lysenko
,
B.
Remaki
,
D.
Barbier
, and
B.
Champagnon
,
J. Appl. Phys.
86
,
4700
(
1999
).
7.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
8.
S.
Sahoo
,
A. P. S.
Gaur
,
M.
Ahmadi
,
M. J. F.
Guinel
, and
R. S.
Katiyar
,
J. Phys. Chem. C
117
,
9042
(
2013
).
9.
N.
Peimyoo
,
J.
Shang
,
W.
Yang
,
Y.
Wang
,
C.
Cong
, and
T.
Yu
,
Nano Res.
8
,
1210
(
2015
).
10.
X.
Zhang
,
D.
Sun
,
Y.
Li
,
G. H.
Lee
,
X.
Cui
,
D.
Chenet
,
Y.
You
,
T. F.
Heinz
, and
J. C.
Hone
,
ACS Appl. Mater. Interfaces
7
,
25923
(
2015
).
11.
A. S.
Davydov
, “
The theory of molecular excitons
,”
Sov. Phys. Usp.
7
,
145
(
1964
).
12.
Q. J.
Song
,
Q. H.
Tan
,
X.
Zhang
,
J. B.
Wu
,
B. W.
Sheng
,
Y.
Wan
,
X. Q.
Wang
,
L.
Dai
, and
P. H.
Tan
,
Phys. Rev. B
93
,
115409
(
2016
).
13.
P.
Soubelet
,
A. E.
Bruchhausen
,
A.
Fainstein
,
K.
Nogajewski
, and
C.
Faugeras
,
Phys. Rev. B
93
,
155407
(
2016
).
14.
Q.-H.
Tan
,
Y.-J.
Sun
,
X.-L.
Liu
,
Y.
Zhao
,
Q.
Xiong
,
P.-H.
Tan
, and
J.
Zhang
,
2D Mater.
4
,
031007
(
2017
).
15.
M.
Staiger
,
R.
Gillen
,
N.
Scheuschner
,
O.
Ochedowski
,
F.
Kampmann
,
M.
Schleberger
,
C.
Thomsen
, and
J.
Maultzsch
,
Phys. Rev. B
91
,
195419
(
2015
).
16.
V.
Singh
,
D. J.
Late
,
A.
Goyal
, and
S.
Rath
,
Appl. Surf. Sci.
538
,
147946
(
2021
).
17.
A. S.
Pawbake
,
M. S.
Pawar
,
S. R.
Jadkar
, and
D. J.
Late
,
Nanoscale
8
,
3008
(
2016
).
18.
K.
Kim
,
J. U.
Lee
,
D.
Nam
, and
H.
Cheong
,
ACS Nano
10
,
8113
(
2016
).
19.
D.
Nam
,
J.-U.
Lee
, and
H.
Cheong
,
Sci. Rep.
5
,
17113
(
2015
).
20.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
,
Adv. Funct. Mater.
22
,
1385
(
2012
).
21.
V.
Singh
,
D. J.
Late
, and
S.
Rath
,
J. Vac. Sci. Technol. A
38
,
023402
(
2020
).
22.
A.
Molina-Sánchez
and
L.
Wirtz
,
Phys. Rev. B
84
,
155413
(
2011
).
23.
X.
Zhang
,
X.-F.
Qiao
,
W.
Shi
,
J.-B.
Wu
,
D.-S.
Jiang
, and
P.-H.
Tan
,
Chem. Soc. Rev.
44
,
2757
(
2015
).
24.
X.
Luo
,
Y.
Zhao
,
J.
Zhang
,
M.
Toh
,
C.
Kloc
,
Q.
Xiong
, and
S. Y.
Quek
,
Phys. Rev. B
88
,
195313
(
2013
).
25.
G.
Froehlicher
,
E.
Lorchat
,
F.
Fernique
,
C.
Joshi
,
A.
Molina-Sánchez
,
L.
Wirtz
, and
S.
Berciaud
,
Nano Lett.
15
,
6481
(
2015
).
26.
S.
Kim
,
K.
Kim
,
J. U.
Lee
, and
H.
Cheong
,
2D Mater.
4
,
045002
(
2017
).
27.
W.
Na
,
K.
Kim
,
J.-U.
Lee
, and
H.
Cheong
,
2D Mater.
6
,
015004
(
2018
).
28.
S. V.
Bhatt
,
M. P.
Deshpande
,
V.
Sathe
,
R.
Rao
, and
S. H.
Chaki
,
J. Raman Spectrosc.
45
,
971
(
2014
).
29.
P. S.
Peercy
and
B.
Morosin
,
Phys. Rev. B
7
,
2779
(
1973
).
30.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
,
Phys. Rev. B
28
,
1928
(
1983
).
31.
A.
Taube
,
A.
Łapińska
,
J.
Judek
, and
M.
Zdrojek
,
Appl. Phys. Lett.
107
,
013105
(
2015
).
32.
Y.
Yang
,
X.
Wang
,
S.-C.
Liu
,
Z.
Li
,
Z.
Sun
,
C.
Hu
,
D.-J.
Xue
,
G.
Zhang
, and
J.-S.
Hu
,
Adv. Sci.
6
,
1801810
(
2019
).
33.
S.
Zhang
,
J.
Yang
,
R.
Xu
,
F.
Wang
,
W.
Li
,
M.
Ghufran
,
Y.-W.
Zhang
,
Z.
Yu
,
G.
Zhang
,
Q.
Qin
, and
Y.
Lu
,
ACS Nano
8
,
9590
(
2014
).
34.
X.
Gu
,
B.
Li
, and
R.
Yang
,
J. Appl. Phys.
119
,
085106
(
2016
).
35.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
,
Nat. Mater.
9
,
555
(
2010
).
You do not currently have access to this content.