Band alignment engineering is crucial and feasible to enrich the functionalities of van der Waals heterojunctions (vdWHs) for rectifying functions in next-generation information storage technologies. However, band alignment tunability is volatile as it needs a sustained external field to maintain the Femi level of single components, which hinders the implementation of nonvolatile functions. Here, the ferroelectric semiconducting nature of alpha-In2Se3 is utilized to design vdWHs based on two-dimensional transition metal dichalcogenides (TMDs)/alpha-In2Se3, where TMDs are used as the channel, and the ferroelectric semiconductor alpha-In2Se3 is assembled as an asymmetric gate. A density functional theory validates that the band offset in a homogeneous TMDs channel is tuned by coupling the effect of the semiconducting nature and asymmetric ferroelectric gate of alpha-In2Se3, which induces simultaneous rectifying and memory functions. This includes a programmable rectifying ratio of up to 104, ultra-large memory window (110 V), programming/erasing of 104, and good endurance. The tuned band offset from the asymmetric ferroelectric semiconductor gate is conceptualized as a guideline to realize a simultaneous rectifying and memory device with high programmability.

1.
K.
Asadi
, “
Resistance switching in two-terminal ferroelectric-semiconductor lateral heterostructures
,”
Appl. Phys. Rev.
7
,
021307
(
2020
).
2.
X.
Wu
,
K.
Yu
,
D.
Cha
,
M.
Bosman
,
N.
Raghavan
,
X.
Zhang
,
K.
Li
,
Q.
Liu
,
L.
Sun
, and
K.
Pey
, “
Atomic scale modulation of self-rectifying resistive switching by interfacial defects
,”
Adv. Sci.
5
,
1800096
(
2018
).
3.
R.
Yang
, “
In-memory computing with ferroelectrics
,”
Nat. Electron.
3
,
237
238
(
2020
).
4.
M.
Hu
,
J.
Y
,
Y.
Chen
,
S.
Wang
,
B.
Dong
,
H.
Wang
,
Y.
He
,
Y.
Ma
,
F.
Zhuge
, and
T.
Zhai
, “
A non-linear two-dimensional float gate transistor as a lateral inhibitory synapse for retinal early visual processing
,”
Mater. Horiz.
9
,
2335
2344
(
2022
).
5.
X.
Zhao
,
K.
Chang
,
B.
Liu
,
K. a
Jiang
,
C.
Hu
,
Y.
Wang
, and
H.
Wang
, “
Electrochemical-tunable and mesostructure-dependent abrupt-to-progressive conversion in fibroin-based transient memristor
,”
Appl. Phys. Lett.
121
,
023301
(
2022
).
6.
C.
Liu
,
H.
Chen
,
S.
Wang
,
Q.
Liu
,
Y.-G.
Jiang
,
D. W.
Zhang
,
M.
Liu
, and
P.
Zhou
, “
Two-dimensional materials for next-generation computing technologies
,”
Nat. Nanotechnol.
15
,
545
557
(
2020
).
7.
Y.
Chen
,
C. T.
Wang
,
Z.
Miao
,
J.
Ge
,
X.
Zhao
,
T.
Liao
,
K.
Ge
,
H.
Wang
,
Y.
Wang
,
F.
Zhou
,
Y.
Peng Wang
,
X.
Zhou
,
C.
Shan
,
H.
Peng
, and
W.
Hu
, “
Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection
,”
Sci. Adv.
8
,
1781
(
2022
).
8.
C.-H.
Lee
,
G.-H.
Lee
,
A. M.
van der Zande
,
W.
Chen
,
Y.
Li
,
M.
Han
,
X.
Cui
,
G.
Arefe
,
C.
Nuckolls
,
T. F.
Heinz
,
J.
Guo
,
J.
Hone
, and
P.
Kim
, “
Atomically thin p–n junctions with van der Waals heterointerfaces
,”
Nat. Nanotechnol.
9
,
676
681
(
2014
).
9.
H. B.
Jeon
,
G. H.
Shin
,
K. J.
Lee
, and
S. Y.
Choi
, “
Vertical-tunneling field-effect transistor based on WSe2-MoS2 heterostructure with ion gel dielectric
,”
Adv. Electron. Mater.
6
,
2000091
(
2020
).
10.
D.
Jariwala
,
S. L.
Howell
,
K. S.
Chen
,
J.
Kang
,
V. K.
Sangwan
,
S. A.
Filippone
,
R.
Turrisi
,
T. J.
Marks
,
L. J.
Lauhon
, and
M. C.
Hersam
, “
Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2
,”
Nano letters
16
,
497
503
(
2016
).
11.
L.
Liu
,
N.
Xu
,
Y.
Zhang
,
P.
Zhao
,
H.
Chen
, and
S.
Deng
, “
Van der Waals bipolar junction transistor using vertically stacked two-dimensional atomic crystals
,”
Adv. Funct. Mater.
29
,
1807893
(
2019
).
12.
M.
Si
,
A. K.
Saha
,
S.
Gao
,
G.
Qiu
,
J.
Qin
,
Y.
Duan
,
J.
Jian
,
C.
Niu
,
H.
Wang
,
W.
Wu
,
S. K.
Gupta
, and
P. D.
Ye
, “
A ferroelectric semiconductor field-effect transistor
,”
Nat. Electron.
2
,
580
586
(
2019
).
13.
S.
Wang
,
L.
Liu
,
L.
Gan
,
H.
Chen
,
X.
Hou
,
Y.
Ding
,
S.
Ma
,
D. W.
Zhang
, and
P.
Zhou
, “
Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing
,”
Nat. Commun.
12
,
53
(
2021
).
14.
Y.
Zhou
,
D.
Wu
,
Y.
Zhu
,
Y.
Cho
,
Q.
He
,
X.
Yang
,
K.
Herrera
,
Z.
Chu
,
Y.
Han
,
M. C.
Downer
,
H.
Peng
, and
K.
Lai
, “
Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes
,”
Nano Lett.
17
,
5508
5513
(
2017
).
15.
M.
Dai
,
Z.
Wang
,
F.
Wang
,
Y.
Qiu
,
J.
Zhang
,
C.-Y.
Xu
,
T.
Zhai
,
W.
Cao
,
Y.
Fu
,
D.
Jia
,
Y.
Zhou
, and
P.-A.
Hu
, “
Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors
,”
Nano Lett.
19
,
5410
5416
(
2019
).
16.
B. J.
Shastri
,
A. N.
Tait
,
T.
Ferreira de Lima
,
W. H. P.
Pernice
,
H.
Bhaskaran
,
C. D.
Wright
, and
P. R.
Prucnal
, “
Photonics for artificial intelligence and neuromorphic computing
,”
Nat. Photonics
15
,
102
114
(
2021
).
17.
F.
Xue
,
X.
He
,
W.
Liu
,
D.
Periyanagounder
,
C.
Zhang
,
M.
Chen
,
C. H.
Lin
,
L.
Luo
,
E.
Yengel
,
V.
Tung
,
T. D.
Anthopoulos
,
L. J.
Li
,
J. H.
He
, and
X.
Zhang
, “
Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric
,”
Adv. Funct. Mater.
30
,
2004206
(
2020
).
18.
S.
Yuan
,
Z.
Yang
,
C.
Xie
,
F.
Yan
,
J.
Dai
,
S. P.
Lau
,
H. L. W.
Chan
, and
J.
Hao
, “
Ferroelectric-driven performance enhancement of graphene field-effect transistors based on vertical tunneling heterostructures
,”
Adv. Mater.
28
,
10048
10054
(
2016
).
19.
S.
Han
,
M.
Li
,
Y.
Liu
,
W.
Guo
,
M.-C.
Hong
,
Z.
Sun
, and
J.
Luo
, “
Tailoring of a visible-light-absorbing biaxial ferroelectric towards broadband self-driven photodetection
,”
Nat. Commun.
12
,
284
(
2021
).
20.
L.
Liu
,
L.
Wu
,
A.
Wang
,
H.
Liu
,
R.
Ma
,
K.
Wu
,
J.
Chen
,
Z.
Zhou
,
Y.
Tian
,
H.
Yang
,
C.
Shen
,
L.
Bao
,
Z.
Qin
,
S. T.
Pantelides
, and
H.-J.
Gao
, “
Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity
,”
Nano Lett.
20
,
6666
–6673 (
2020
).
21.
C.
Baeumer
,
D.
Saldana-Greco
,
J. M. P.
Martirez
,
A. M.
Rappe
,
M.
Shim
, and
L. W.
Martin
, “
Ferroelectrically driven spatial carrier density modulation in graphene
,”
Nat. Commun.
6
,
6136
(
2015
).
22.
D.
Kundys
,
A.
Cascales
,
A. S.
Makhort
,
H.
Majjad
,
F.
Chevrier
,
B.
Doudin
,
A.
Fedrizzi
, and
B.
Kundys
, “
Optically rewritable memory in a graphene–ferroelectric-photovoltaic heterostructure
,”
Phys. Rev. Appl.
13
,
064034
(
2020
).
23.
H.
Yang
,
M.
Xiao
,
Y.
Cui
,
L.
Pan
,
K.
Zhao
, and
Z.
Wei
, “
Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2
,”
Sci. China Inf. Sci.
62
,
220404
(
2019
).
24.
S.
Wan
,
Y.
Li
,
W.
Li
,
X.
Mao
,
C.
Wang
,
C.
Chen
,
J.
Dong
,
A.
Nie
,
J.
Xiang
,
Z.
Liu
,
W.
Zhu
, and
H.
Zeng
, “
Nonvolatile ferroelectric memory effect in ultrathin a-In2Se3
,”
Adv. Funct. Mater.
29
,
1808606
(
2019
).
25.
W.
Huang
,
F.
Wang
,
L.
Yin
,
R.
Cheng
,
Z.
Wang
,
M. G.
Sendeku
,
J.
Wang
,
N.
Li
,
Y.
Yao
, and
J.
He
, “
Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions
,”
Adv. Mater.
32
,
1908040
(
2020
).
26.
P.
Singh
,
S.
Baek
,
H. H.
Yoo
,
J.
Niu
,
J.-H.
Park
, and
S.
Lee
, “
Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications
,”
ACS Nano
16
,
5418
5426
(
2022
).
27.
M.
Si
,
P. Y.
Liao
,
G.
Qiu
,
Y.
Duan
, and
P. D.
Ye
, “
Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure
,”
ACS Nano
12
,
6700
6705
(
2018
).
28.
X.
Wang
,
C.
Zhu
,
Y.
Deng
,
R.
Duan
,
J.
Chen
,
Q.
Zeng
,
J.
Zhou
,
Q.
Fu
,
L.
You
,
S.
Liu
,
J. H.
Edgar
,
P.
Yu
, and
Z.
Liu
, “
Van der Waals engineering of ferroelectric heterostructures for long-retention memory
,”
Nat. Commun.
12
,
1109
(
2021
).
29.
Y.
Chen
,
X.
Wang
,
L.
Huang
,
X.
Wang
,
W.
Jiang
,
Z.
Wang
,
P.
Wang
,
B.
Wu
,
T.
Lin
,
H.
Shen
,
Z.
Wei
,
W.
Hu
,
X.
Meng
,
J.
Chu
, and
J.
Wang
, “
Ferroelectric-tuned van der Waals heterojunction with band alignment evolution
,”
Nat. Commun.
12
,
4030
(
2021
).
30.
J.
Li
,
H.
Li
,
X.
Niu
, and
Z.
Wang
, “
Low-dimensional In2Se3 compounds: From material preparations to device applications
,”
ACS Nano
15
,
18683
18707
(
2021
).
31.
Y.
Jiang
,
L.
Zhang
,
R.
Wang
,
H.
Li
,
L.
Li
,
S.
Zhang
,
X.
Li
,
J.
Su
,
X.
Song
, and
C.
Xia
, “
Asymmetric ferroelectric-gated two-dimensional transistor integrating self-rectifying photoelectric memory and artificial synapse
,”
ACS Nano
16
,
11218
11226
(
2022
).
32.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
, “
Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
,”
Nat. Commun.
8
,
14956
(
2017
).
33.
A.
Kahn
, “
Fermi level, work function and vacuum level
,”
Mater. Horiz.
3
,
7
10
(
2016
).
34.
G.
Wu
,
B.
Tian
,
L.
Liu
,
W.
Lv
,
S.
Wu
,
X.
Wang
,
Y.
Chen
,
J.
Li
,
Z.
Wang
,
S.
Wu
,
H.
Shen
,
T.
Lin
,
P.
Zhou
,
Q.
Liu
,
C.
Duan
,
S.
Zhang
,
X.
Meng
,
S.
Wu
,
W.
Hu
,
X.
Wang
,
J.
Chu
, and
J.
Wang
, “
Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains
,”
Nat. Electron.
3
,
43
50
(
2020
).
35.
F.
Xue
,
X.
He
,
J. R. D.
Retamal
,
A.
Han
,
J.
Zhang
,
Z.
Liu
,
J. K.
Huang
,
W.
Hu
,
V.
Tung
,
J. H.
He
,
L. J.
Li
, and
X.
Zhang
, “
Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric
,”
Adv. Mater.
31
,
1901300
(
2019
).
36.
Y.
Park
,
H. W.
Baac
,
J.
Heo
, and
G.
Yoo
, “
Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors
,”
Appl. Phys. Lett.
108
,
083102
(
2016
).
37.
Q.
Li
,
C.
Yuan
,
T.
Yu
,
Q.
Wang
, and
J.
Li
, “
Nonvolatile charge memory with optical controllability in two-terminal pristine α-In2Se3 nanosheets
,”
J. Phys. D
53
,
075108
(
2020
).

Supplementary Material

You do not currently have access to this content.