Space and time-varying electromagnetic structures give access to regimes of operation and effects that ordinarily do not occur in their time-invariant counterparts due to modal orthogonality constraints. Here, we present the theory of intermodal energy transfer in time-varying plasmonic structures. After identifying a suitable physical mechanism of permittivity modulation, we introduce an appropriate time-domain formalism to study the evolution of the dielectric polarization density in the system. Using a perturbative approach, we obtain closed-form solutions describing the intermodal energy transfer between a directly excited dipolar mode and a higher order subradiant mode. We further show that the modal amplitudes reach a steady state and determine the optimal modulation conditions that maximize the amplitude of the high-order mode. Finally, we identify a coherent control strategy to enhance the conversion efficiency to higher order modes.

1.
B. E.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
(
John Wiley & Sons
,
New York
,
2019
).
2.
Y.
Hadad
,
D.
Sounas
, and
A.
Alu
, “
Space-time gradient metasurfaces
,”
Phys. Rev. B
92
(
10
),
100304
(
2015
).
3.
N.
Engheta
, “
Metamaterials with high degrees of freedom: Space, time, and more
,”
Nanophotonics
10
(
1
),
639
642
(
2020
).
4.
E.
Galiffi
,
R.
Tirole
,
S.
Yin
 et al, “
Photonics of time-varying media
,”
Adv. Photonics
4
(
1
),
014002
(
2022
).
5.
S.
Fardad
,
J.
Lialys
,
L.
Lialys
 et al, “
Parametrically resonant surface plasmon polaritons
,”
Opt. Lett.
46
(
11
),
2581
2584
(
2021
).
6.
S.
Fardad
and
A.
Salandrino
, “
Plasmonic parametric absorbers
,”
Opt. Lett.
43
(
24
),
6013
6016
(
2018
).
7.
S.
Fardad
,
E.
Schweisberger
, and
A.
Salandrino
, “
Parametric resonances in nonlinear plasmonics
,”
Chin. Opt. Lett.
17
(
12
),
122402
(
2019
).
8.
A.
Salandrino
, “
Plasmonic parametric resonance
,”
Phys. Rev. B
97
(
8
),
081401
(
2018
).
9.
V.
Asadchy
,
A.
Lamprianidis
,
G.
Ptitcyn
 et al, “
Parametric Mie resonances and directional amplification in time-modulated scatterers
,”
Phys. Rev. Appl.
18
(
5
),
054065
(
2022
).
10.
S.
Jahani
,
A.
Roy
, and
A.
Marandi
, “
Wavelength-scale optical parametric oscillators
,”
Optica
8
(
2
),
262
268
(
2021
).
11.
D.
Ramaccia
,
A.
Alù
,
A.
Toscano
 et al, “
Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials
,”
Appl. Phys. Lett.
118
(
10
),
101901
(
2021
).
12.
D.
Ramaccia
,
D. L.
Sounas
,
A.
Alù
 et al, “
Nonreciprocity in antenna radiation induced by space-time varying metamaterial cloaks
,”
IEEE Antennas Wireless Propag. Lett.
17
(
11
),
1968
1972
(
2018
).
13.
Z.
Wu
,
C.
Scarborough
, and
A.
Grbic
, “
Space-time-modulated metasurfaces with spatial discretization: Free-space N-path systems
,”
Phys. Rev. Appl.
14
(
6
),
064060
(
2020
).
14.
M.
Liu
,
A. B.
Kozyrev
, and
I. V.
Shadrivov
, “
Time-varying metasurfaces for broadband spectral camouflage
,”
Phys. Rev. Appl.
12
(
5
),
054052
(
2019
).
15.
A.
Shaltout
,
A.
Kildishev
, and
V.
Shalaev
, “
Time-varying metasurfaces and Lorentz non-reciprocity
,”
Opt. Mater. Express
5
(
11
),
2459
2467
(
2015
).
16.
M.
Biedka
,
Q.
Wu
,
X.
Zou
 et al, “
Integrated time-varying electromagnetic devices for ultra-wide band nonreciprocity
,” in
2018 IEEE Radio and Wireless Symposium (RWS)
(
IEEE
,
2018
), pp.
80
83
.
17.
Y. E.
Wang
, “
Non-reciprocity with time-varying transmission lines (TVTLs)
,” in
2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS)
(
IEEE
,
2012
), pp.
1
4
.
18.
Y. E.
Wang
, “
Time-varying transmission lines (TVTL)—A new pathway to non-reciprocal and intelligent RF front-ends
,” in
2014 IEEE Radio and Wireless Symposium (RWS)
(
IEEE
,
2014
), pp.
148
150
.
19.
G. B.
Arfken
,
Mathematical Methods for Physicists
(
Academic Press
,
Cambridge
,
2013
).
20.
R. W.
Boyd
,
Nonlinear Optics
(
Academic Press
,
Cambridge
,
2003
).
21.
T. F.
Heinz
, “
Second-order nonlinear optical effects at surfaces and interfaces
,” in
Modern Problems in Condensed Matter Sciences
, vol.
29
(
Elsevier
,
Amsterdam
,
1991
), pp.
353
416
.
22.
F. X.
Wang
,
F. J.
Rodríguez
,
W. M.
Albers
 et al, “
Surface and bulk contributions to the second-order nonlinear optical response of a gold film
,”
Phys. Rev. B
80
(
23
),
233402
(
2009
).
23.
D. S.
Chemla
,
Nonlinear Optical Properties of Organic Molecules and Crystals
(
Elsevier
,
Amsterdam
,
2012
).
24.
L.
Allen
and
J. H.
Eberly
,
Optical Resonance and Two-Level Atoms
(
Courier Corporation
,
Massachusetts
,
2012
).
25.
H.
Suchowski
,
D.
Oron
,
A.
Arie
 et al, “
Geometrical representation of sum frequency generation and adiabatic frequency conversion
,”
Phys. Rev. A
78
(
6
),
063821
(
2008
).
You do not currently have access to this content.