Lightweight and single-component artificial muscles represent a promising alternative to conventional actuators for several applications requiring a large power/weight ratio, including modern soft and assistive robotics. Highly Twisted Artificial Muscles (HTAMs) are a relatively young category of artificial muscles, introduced only in 2011. Considering their young age, there is still a lack of awareness in the scientific community on what has been accomplished so far in this field and what are current challenges and limitations. This Perspective paper aims to provide an extensive overview in terms of working mechanism, manufacturing, modeling, and applications of different types of HTAMs. A discussion on challenges and future directions is then provided to encourage transformative research on this topic.

1.
C.
Greco
,
P.
Kotak
,
L.
Pagnotta
, and
C.
Lamuta
, “
The evolution of mechanical actuation: From conventional actuators to artificial muscles
,”
Int. Mater. Rev.
67
(
6
),
575
619
(
2022
).
2.
M. C.
O'Neill
,
L.-F.
Lee
,
S. G.
Larson
,
B.
Demes
,
J. T.
Stern
, Jr.
, and
B. R.
Umberger
, “
A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb
,”
J. Exp. Biol.
216
(
19
),
3709
3723
(
2013
).
3.
C.
Lamuta
,
S.
Messelot
, and
S.
Tawfick
, “
Theory of the tensile actuation of fiber reinforced coiled muscles
,”
Smart Mater. Struct.
27
(
5
),
055018
(
2018
).
4.
C. S.
Haines
,
M. D.
Lima
,
N.
Li
,
G. M.
Spinks
,
J.
Foroughi
,
J. D.
Madden
,
S. H.
Kim
,
S.
Fang
,
M. J.
De Andrade
, and
F.
Göktepe
, “
Artificial muscles from fishing line and sewing thread
,”
Science
343
(
6173
),
868
872
(
2014
).
5.
C.
Lamuta
,
H.
He
,
K.
Zhang
,
M.
Rogalski
,
N.
Sottos
, and
S.
Tawfick
, “
Digital texture voxels for stretchable morphing skin applications
,”
Adv. Mater. Technol.
4
(
8
),
1900260
(
2019
).
6.
C. S.
Haines
,
N.
Li
,
G. M.
Spinks
,
A. E.
Aliev
,
J.
Di
, and
R. H.
Baughman
, “
New twist on artificial muscles
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
42
),
11709
11716
(
2016
).
7.
M. D.
Lima
,
N.
Li
,
M. J.
De Andrade
,
S.
Fang
,
J.
Oh
,
G. M.
Spinks
,
M. E.
Kozlov
,
C. S.
Haines
,
D.
Suh
, and
J.
Foroughi
, “
Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles
,”
Science
338
(
6109
),
928
932
(
2012
).
8.
J.
Foroughi
,
G. M.
Spinks
,
G. G.
Wallace
,
J.
Oh
,
M. E.
Kozlov
,
S.
Fang
,
T.
Mirfakhrai
,
J. D.
Madden
,
M. K.
Shin
, and
S. J.
Kim
, “
Torsional carbon nanotube artificial muscles
,”
Science
334
(
6055
),
494
497
(
2011
).
9.
T.
Tsabedze
,
C.
Mullen
,
R.
Coulter
,
S.
Wade
, and
J.
Zhang
, “
Helically wrapped supercoiled polymer (HW-SCP) artificial muscles: Design, characterization, and modeling
,” in
EEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2020
), pp.
5862
5868
.
10.
X.
Leng
,
X.
Hu
,
W.
Zhao
,
B.
An
,
X.
Zhou
, and
Z.
Liu
, “
Recent advances in twisted‐fiber artificial muscles
,”
Adv. Intell. Syst.
3
(
5
),
2000185
(
2021
).
11.
S.
Tawfick
and
Y.
Tang
, “
Stronger artificial muscles, with a twist
,”
Science
365
(
6449
),
125
126
(
2019
).
12.
S.
Aziz
and
G. M.
Spinks
, “
Torsional artificial muscles
,”
Mater. Horiz.
7
(
3
),
667
693
(
2020
).
13.
X.
Zhou
,
S.
Fang
,
X.
Leng
,
Z.
Liu
, and
R. H.
Baughman
, “
The power of fiber twist
,”
Acc. Chem. Res.
54
(
11
),
2624
2636
(
2021
).
14.
Z.
Wang
and
R. H.
Baughman
, “
Twisted and coiled yarns for energy harvesting and storage, artificial muscles, refrigeration, and sensing
,”
J. Compos. Mater.
2022,
0
(0).
15.
J. A.
Lee
,
Y. T.
Kim
,
G. M.
Spinks
,
D.
Suh
,
X.
Lepró
,
M. D.
Lima
,
R. H.
Baughman
, and
S. J.
Kim
, “
All-solid-state carbon nanotube torsional and tensile artificial muscles
,”
Nano Lett.
14
(
5
),
2664
2669
(
2014
).
16.
P.
Chen
,
Y.
Xu
,
S.
He
,
X.
Sun
,
S.
Pan
,
J.
Deng
,
D.
Chen
, and
H.
Peng
, “
Hierarchically arranged helical fibre actuators driven by solvents and vapours
,”
Nat. Nanotechnol.
10
(
12
),
1077
1083
(
2015
).
17.
J.
Qiao
,
J.
Di
,
S.
Zhou
,
K.
Jin
,
S.
Zeng
,
N.
Li
,
S.
Fang
,
Y.
Song
,
M.
Li
, and
R. H.
Baughman
, “
Large‐Stroke electrochemical carbon nanotube/graphene hybrid yarn muscles
,”
Small
14
(
38
),
1801883
(
2018
).
18.
J.
Mu
,
M.
Jung de Andrade
,
S.
Fang
,
X.
Wang
,
E.
Gao
,
N.
Li
,
S. H.
Kim
,
H.
Wang
,
C.
Hou
, and
Q.
Zhang
, “
Sheath-run artificial muscles
,”
Science
365
(
6449
),
150
155
(
2019
).
19.
L.
Dong
,
M.
Ren
,
Y.
Wang
,
J.
Qiao
,
Y.
Wu
,
J.
He
,
X.
Wei
,
J.
Di
, and
Q.
Li
, “
Self-sensing coaxial muscle fibers with bi-lengthwise actuation
,”
Mater. Horiz.
8
(
9
),
2541
2552
(
2021
).
20.
J. A.
Lee
,
N.
Li
,
C. S.
Haines
,
K. J.
Kim
,
X.
Lepró
,
R.
Ovalle‐Robles
,
S. J.
Kim
, and
R. H.
Baughman
, “
Electrochemically powered, energy‐conserving carbon nanotube artificial muscles
,”
Adv. Mater.
29
(
31
),
1700870
(
2017
).
21.
H.
Cheng
,
Y.
Hu
,
F.
Zhao
,
Z.
Dong
,
Y.
Wang
,
N.
Chen
,
Z.
Zhang
, and
L.
Qu
, “
Moisture‐activated torsional graphene‐fiber motor
,”
Adv. Mater.
26
(
18
),
2909
2913
(
2014
).
22.
J.
Yuan
,
W.
Neri
,
C.
Zakri
,
P.
Merzeau
,
K.
Kratz
,
A.
Lendlein
, and
P.
Poulin
, “
Shape memory nanocomposite fibers for untethered high-energy microengines
,”
Science
365
(
6449
),
155
158
(
2019
).
23.
Q.
Shi
,
J.
Li
,
C.
Hou
,
Y.
Shao
,
Q.
Zhang
,
Y.
Li
, and
H.
Wang
, “
A remote controllable fiber-type near-infrared light-responsive actuator
,”
Chem. Commun.
53
(
81
),
11118
11121
(
2017
).
24.
W.
Wang
,
C.
Xiang
,
D.
Sun
,
M.
Li
,
K.
Yan
, and
D.
Wang
, “
Photothermal and moisture actuator made with graphene oxide and sodium alginate for remotely controllable and programmable intelligent devices
,”
ACS Appl. Mater. Interfaces
11
(
24
),
21926
21934
(
2019
).
25.
S. M.
Mirvakili
and
I. W.
Hunter
, “
Fast torsional artificial muscles from NiTi twisted yarns
,”
ACS Appl. Mater. Interfaces
9
(
19
),
16321
16326
(
2017
).
26.
M.
Kanik
,
S.
Orguc
,
G.
Varnavides
,
J.
Kim
,
T.
Benavides
,
D.
Gonzalez
,
T.
Akintilo
,
C. C.
Tasan
,
A. P.
Chandrakasan
, and
Y.
Fink
, “
Strain-programmable fiber-based artificial muscle
,”
Science
365
(
6449
),
145
150
(
2019
).
27.
T.
Jia
,
Y.
Wang
,
Y.
Dou
,
Y.
Li
,
M.
Jung de Andrade
,
R.
Wang
,
S.
Fang
,
J.
Li
,
Z.
Yu
, and
R.
Qiao
, “
Moisture sensitive smart yarns and textiles from self‐balanced silk fiber muscles
,”
Adv. Funct. Mater.
29
(
18
),
1808241
(
2019
).
28.
Y.
Li
,
X.
Leng
,
J.
Sun
,
X.
Zhou
,
W.
Wu
,
H.
Chen
, and
Z.
Liu
, “
Moisture-sensitive torsional cotton artificial muscle and textile
,”
Chin. Phys. B
29
(
4
),
048103
(
2020
).
29.
D. J.
Shepherd
and
G. M.
Spinks
, “
Double helix actuators
,”
Adv. Mater. Technol.
4
(
1
),
1800525
(
2019
).
30.
Y.
Wang
,
Z.
Wang
,
Z.
Lu
,
M. N.
Jung de Andrade
,
S.
Fang
,
Z.
Zhang
,
J.
Wu
, and
R. H.
Baughman
, “
Humidity-and water-responsive torsional and contractile lotus fiber yarn artificial muscles
,”
ACS Appl. Mater. Interfaces
13
(
5
),
6642
6649
(
2021
).
31.
X.
Leng
,
X.
Zhou
,
J.
Liu
,
Y.
Xiao
,
J.
Sun
,
Y.
Li
, and
Z.
Liu
, “
Tuning the reversibility of hair artificial muscles by disulfide cross-linking for sensors, switches, and soft robotics
,”
Mater. Horiz.
8
(
5
),
1538
1546
(
2021
).
32.
X.
Hu
,
X.
Leng
,
T.
Jia
, and
Z.
Liu
, “
Twisted and coiled bamboo artificial muscles for moisture responsive torsional and tensile actuation
,”
Chin. Phys. B
29
(
11
),
118103
(
2020
).
33.
Y.
Peng
,
X.
Zhou
,
J.
Wu
,
N.
Sheng
,
M.
Yang
, and
F.
Sun
, “
Free-standing single-helical woolen yarn artificial muscles with robust and trainable humidity-sensing actuation by eco-friendly treatment strategies
,”
Smart Mater. Struct.
31
(
9
),
095017
(
2022
).
34.
P.
Kotak
,
T.
Weerakkody
, and
C.
Lamuta
, “
Physics-based dynamic model for the electro-thermal actuation of bio-inspired twisted spiral artificial muscles (TSAMs)
,”
Polymers
222
,
123642
(
2021
).
35.
L.
Saharan
and
Y.
Tadesse
, “
Novel twisted and coiled polymer artificial muscles for biomedical and robotics applications
,”
Materials for Biomedical Engineering
(
Elsevier
2019
), pp.
45
75
.
36.
D.
Kongahage
,
G. M.
Spinks
, and
J.
Foroughi
, “
Twisted and coiled multi-ply yarns artificial muscles
,”
Sens. Actuators, A
318
,
112490
(
2021
).
37.
S.
Bell
,
A.
Bangel
,
T.
Weerakkody
,
X.
Song
, and
C.
Lamuta
, “
Automated manufacturing system for carbon fiber-based twisted and coiled artificial muscles (TCAMs)
,”
Manuf. Lett.
33
,
19
23
(
2022
).
38.
C.
Greco
,
P.
Kotak
,
J. K.
Gallegos
,
J.
Fang
,
A.
Wilkinson
,
L.
Pagnotta
, and
C.
Lamuta
, “
Scalable manufacturing system for bionspired twisted spiral artificial muscles (TSAMs
,”
Manuf. Lett.
26
,
6
11
(
2020
).
39.
A. N.
Semochkin
, “
A device for producing artificial muscles from nylon fishing line with a heater wire
,” in
IEEE International Symposium on Assembly and Manufacturing (ISAM)
(
IEEE
,
2016
), pp.
26
30
.
40.
J.
Sun
and
J.
Zhao
, “
Integrated actuation and self-sensing for twisted-and-coiled actuators with applications to innervated soft robots
,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
IEEE
,
2020
), pp.
8795
8800
.
41.
S. Y.
Yang
,
K. H.
Cho
,
Y.
Kim
,
M.-G.
Song
,
H. S.
Jung
,
J. W.
Yoo
,
H.
Moon
,
J. C.
Koo
, and
H. R.
Choi
, “
High performance twisted and coiled soft actuator with spandex fiber for artificial muscles
,”
Smart Mater. Struct.
26
(
10
),
105025
(
2017
).
42.
J.
Sun
and
J.
Zhao
, “
Physics-based modeling of twisted-and-coiled actuators using Cosserat rod theory
,”
IEEE Trans. Rob.
38
(
2
),
779
796
(
2021
).
43.
M. C.
Yip
and
G.
Niemeyer
, “
On the control and properties of supercoiled polymer artificial muscles
,”
IEEE Trans. Rob.
33
(
3
),
689
699
(
2017
).
44.
T.
Luong
,
K.
Kim
,
S.
Seo
,
J. H.
Park
,
Y.
Kim
,
S. Y.
Yang
,
K. H.
Cho
,
J. C.
Koo
,
H. R.
Choi
, and
H.
Moon
, “
Modeling and position control of a high performance twisted-coiled polymer actuator
,” in
15th International Conference on Ubiquitous Robots (UR)
(
IEEE
,
2018
), pp.
73
79
.
45.
A.
Abbas
and
J.
Zhao
, “
A physics based model for twisted and coiled actuator
,” in
IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2017
), pp.
6121
6126
.
46.
L.
Saharan
,
L.
Wu
, and
Y.
Tadesse
, “
Modeling and simulation of robotic finger powered by nylon artificial muscles
,”
J. Mech. Rob.
12
(
1
),
014501
(
2020
).
47.
J. E.
Slightam
and
M. L.
Nagurka
, “
Theoretical dynamic modeling and validation of braided pneumatic artificial muscles
,”
J. Dyn. Syst., Meas., Control
142
(
3
),
031008
(
2020
).
48.
F.
Karami
and
Y.
Tadesse
, “
Modeling of twisted and coiled polymer (TCP) muscle based on phenomenological approach
,”
Smart Mater. Struct.
26
(
12
),
125010
(
2017
).
49.
F.
Karami
,
L.
Wu
, and
Y.
Tadesse
, “
Modeling of one-ply and two-ply twisted and coiled polymer artificial muscles
,”
IEEE/ASME Trans. Mechatronics
26
(
1
),
300
310
(
2020
).
50.
Q.
Yang
and
G.
Li
, “
A top-down multi-scale modeling for actuation response of polymeric artificial muscles
,”
J. Mech. Phys. Solids
92
,
237
259
(
2016
).
51.
A. E. H.
Love
,
A Treatise on the Mathematical Theory of Elasticity
(
Cambridge University Press
2013
).
52.
V.
Giovinco
,
P.
Kotak
,
V.
Cichella
,
C.
Maletta
, and
C.
Lamuta
, “
Dynamic model for the tensile actuation of thermally and electro-thermally actuated twisted and coiled artificial muscles (TCAMs)
,”
Smart Mater. Struct.
29
(
2
),
025004
(
2019
).
53.
N.
Charles
,
M.
Gazzola
, and
L.
Mahadevan
, “
Topology, geometry, and mechanics of strongly stretched and twisted filaments: Solenoids, plectonemes, and artificial muscle fibers
,”
Phys. Rev. Lett.
123
(
20
),
208003
(
2019
).
54.
M.
Hammond
,
V.
Cichella
,
T.
Weerakkody
, and
C.
Lamuta
, “
Robust and adaptive sampled-data control of twisted and coiled artificial muscles
,”
IEEE Control Syst. Lett.
6
,
1232
1237
(
2021
).
55.
N.
Hovakimyan
and
C.
Cao
,
ℒ1 Adaptive Control Theory: Guaranteed Robustness With Fast Adaptation
(
SIAM
,
2010
).
56.
S. H.
Kim
,
C. S.
Haines
,
N.
Li
,
K. J.
Kim
,
T. J.
Mun
,
C.
Choi
,
J.
Di
,
Y. J.
Oh
,
J. P.
Oviedo
, and
J.
Bykova
, “
Harvesting electrical energy from carbon nanotube yarn twist
,”
Science
357
(
6353
),
773
778
(
2017
).
57.
D.
Zhang
,
M.
Miao
,
H.
Niu
, and
Z.
Wei
, “
Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles
,”
ACS Nano
8
(
5
),
4571
4579
(
2014
).
58.
W.
Weng
,
Q.
Sun
,
Y.
Zhang
,
H.
Lin
,
J.
Ren
,
X.
Lu
,
M.
Wang
, and
H.
Peng
, “
Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances
,”
Nano Lett.
14
(
6
),
3432
3438
(
2014
).
59.
P.
Kotak
,
J. M.
Wilken
,
K. M.
Anderson
, and
C.
Lamuta
, “
Carbon fiber-based twisted and coiled artificial muscles (TCAMs) for powered ankle-foot orthoses
,”
J. Biomech. Eng.
144
(
1
),
014501
(
2022
).
60.
L.
Saharan
,
M. J.
de Andrade
,
W.
Saleem
,
R. H.
Baughman
, and
Y.
Tadesse
, “
Tadesse, iGrab: Hand orthosis powered by twisted and coiled polymer muscles
,”
Smart Mater. Struct.
26
(
10
),
105048
(
2017
).
61.
C.
Wu
,
Z.
Zhang
, and
W.
Zheng
, “
A twisted and coiled polymer artificial muscles driven soft crawling robot based on enhanced antagonistic configuration
,”
Machines
10
(
2
),
142
(
2022
).
62.
Y.
Almubarak
and
Y.
Tadesse
, “
Twisted and coiled polymer (TCP) muscles embedded in silicone elastomer for use in soft robot
,”
Int. J. Intell. Rob. Appl.
1
(
3
),
352
368
(
2017
).
63.
F.
Fei
,
P.
Kotak
,
L.
He
,
X.
Li
,
C.
Vanderhoef
,
C.
Lamuta
, and
X.
Song
, “
Cephalopod‐inspired stretchable self‐morphing skin via embedded printing and twisted spiral artificial muscles
,”
Adv. Funct. Mater.
31
(
46
),
2105528
(
2021
).
64.
P.
Kotak
,
T.
Johnson
, and
C.
Lamuta
, “
Bioinspired fouling‐release smart skin powered by Twisted Spiral Artificial Muscles (TSAMs)
,”
Adv. Mater. Technol.
2201262
(
2022
).
65.
J.
Pikul
,
S.
Li
,
H.
Bai
,
R.
Hanlon
,
I.
Cohen
, and
R. F.
Shepherd
, “
Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins
,”
Science
358
(
6360
),
210
214
(
2017
).
You do not currently have access to this content.