Quantum diamond microscopy is an emerging versatile technique for studying the magnetic properties of materials. It has been applied extensively in condensed matter physics and materials science and has blossomed into a unique platform for the magnetic study of biological systems. To date, biological demonstrations of quantum diamond microscopy have been performed under ambient conditions. Here, we extend this magnetic microscopy platform to cryogenic temperatures to study magnetic anisotropy and the blocking temperature from an individual iron organelle found within the inner ear of pigeons. Our work confirms that the interface between thin histological tissue sections and diamond can be maintained under cryogenic temperatures. Our magnetic images provide evidence of magnetic anisotropy from a single iron organelle with sub-cellular resolution using this correlative optical imaging method. This approach may be extended to a broad range of systems where magnetic materials play structural and functional roles in biological systems.

1.
P.
Jandacka
,
H.
Burda
, and
J.
Pistora
, “
Magnetically induced behaviour of ferritin corpuscles in avian ears: Can cuticulosomes function as magnetosomes?
,”
J. R. Soc. Interface
12
,
20141087
(
2015
).
2.
G. C.
Papaefthymiou
, “
The Mössbauer and magnetic properties of ferritin cores
,”
Biochim. Biophys. Acta
1800
,
886
897
(
2010
).
3.
J.
Shaw
,
A.
Boyd
,
M.
House
,
R.
Woodward
,
F.
Mathes
,
G.
Cowin
,
M.
Saunders
, and
B.
Baer
, “
Magnetic particle-mediated magnetoreception
,”
J. R. Soc. Interface
12
,
20150499
(
2015
).
4.
J.
Clarke
,
Y.-H.
Lee
, and
J.
Schneiderman
, “
Focus on SQUIDs in biomagnetism
,”
Supercond. Sci. Technol.
31
,
080201
(
2018
).
5.
D.
Passeri
,
C.
Dong
,
M.
Reggente
,
L.
Angeloni
,
M.
Barteri
,
F. A.
Scaramuzzo
,
F.
De Angelis
,
F.
Marinelli
,
F.
Antonelli
,
F.
Rinaldi
,
C.
Marianecci
,
M.
Carafa
,
A.
Sorbo
,
D.
Sordi
,
I. W.
Arends
, and
M.
Rossi
, “
Magnetic force microscopy: Quantitative issues in biomaterials
,”
Biomatter
4
,
e29507
(
2014
).
6.
B.
Chesca
,
D.
John
, and
R.
Cantor
, “
SQUID-arrays coupled to on-chip integrated thin-film superconducting input coils operating coherently
,”
Appl. Phys. Lett.
118
,
042601
(
2021
).
7.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C.
Hollenberg
, “
The nitrogen-vacancy colour centre in diamond
,”
Phys. Rep.
528
,
1
45
(
2013
).
8.
M. H.
Alkahtani
,
F.
Alghannam
,
L.
Jiang
,
A.
Almethen
,
A. A.
Rampersaud
,
R.
Brick
,
C. L.
Gomes
,
M. O.
Scully
, and
P. R.
Hemmer
, “
Fluorescent nanodiamonds: Past, present, and future
,”
Nanophotonics
7
,
1423
1453
(
2018
).
9.
N.
Bondon
,
L.
Raehm
,
C.
Charnay
,
R.
Boukherroub
, and
J.-O.
Durand
, “
Nanodiamonds for bioapplications, recent developments
,”
J. Mater. Chem. B
8
,
10878
10896
(
2020
).
10.
S. C.
Scholten
,
A. J.
Healey
,
I. O.
Robertson
,
G. J.
Abrahams
,
D. A.
Broadway
, and
J.-P.
Tetienne
, “
Widefield quantum microscopy with nitrogen-vacancy centers in diamond: Strengths, limitations, and prospects
,”
J. Appl. Phys.
130
,
150902
(
2021
).
11.
E.
Schäfer-Nolte
,
L.
Schlipf
,
M.
Ternes
,
F.
Reinhard
,
K.
Kern
, and
J.
Wrachtrup
, “
Tracking temperature-dependent relaxation times of ferritin nanomagnets with a wideband quantum spectrometer
,”
Phys. Rev. Lett.
113
,
217204
(
2014
).
12.
D. L.
Sage
,
K.
Arai
,
D. R.
Glenn
,
S. J.
DeVience
,
L. M.
Pham
,
L.
Rahn-Lee
,
M. D.
Lukin
,
A.
Yacoby
,
A.
Komeili
, and
R. L.
Walsworth
, “
Optical magnetic imaging of living cells
,”
Nature
496
,
486
489
(
2013
).
13.
D. R.
Glenn
,
R. R.
Fu
,
P.
Kehayias
,
D. L.
Sage
,
E. A.
Lima
,
B. P.
Weiss
, and
R. L.
Walsworth
, “
Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope
,”
Geochem., Geophys., Geosyst.
18
,
3254
3267
, (
2017
).
14.
I.
Fescenko
,
A.
Laraoui
,
J.
Smits
,
N.
Mosavian
,
P.
Kehayias
,
J.
Seto
,
L.
Bougas
,
A.
Jarmola
, and
V. M.
Acosta
, “
Diamond magnetic microscopy of malarial hemozoin nanocrystals
,”
Phys. Rev. Appl.
11
,
034029
(
2019
).
15.
J. M.
McCoey
,
M.
Matsuoka
,
R. W.
de Gille
,
L. T.
Hall
,
J. A.
Shaw
,
J.-P.
Tetienne
,
D.
Kisailus
,
L. C. L.
Hollenberg
, and
D. A.
Simpson
, “
Quantum magnetic imaging of iron biomineralization in teeth of the chiton Acanthopleura hirtosa
,”
Small Methods
4
,
1900754
(
2020
).
16.
R. W.
de Gille
,
J. M.
McCoey
,
L. T.
Hall
,
J.-P.
Tetienne
,
E. P.
Malkemper
,
D. A.
Keays
,
L. C. L.
Hollenberg
, and
D. A.
Simpson
, “
Quantum magnetic imaging of iron organelles within the pigeon cochlea
,”
Proc. Natl. Acad. Sci.
118
,
e2112749118
(
2021
).
17.
M.
Capelli
,
A.
Heffernan
,
T.
Ohshima
,
H.
Abe
,
J.
Jeske
,
A.
Hope
,
A.
Greentree
,
P.
Reineck
, and
B.
Gibson
, “
Increased nitrogen-vacancy centre creation yield in diamond through electron beam irradiation at high temperature
,”
Carbon
143
,
714
719
(
2019
).
18.
D. J.
McCloskey
,
N.
Dontschuk
,
D. A.
Broadway
,
A.
Nadarajah
,
A.
Stacey
,
J.-P.
Tetienne
,
L. C. L.
Hollenberg
,
S.
Prawer
, and
D. A.
Simpson
, “
Enhanced widefield quantum sensing with nitrogen-vacancy ensembles using diamond nanopillar arrays
,”
ACS Appl. Mater. Interfaces
12
,
13421
13427
(
2020
).
19.
A.
Gruber
,
A.
Dräbenstedt
,
C.
Tietz
,
L.
Fleury
,
J.
Wrachtrup
, and
C.
von Borczyskowski
, “
Scanning confocal optical microscopy and magnetic resonance on single defect centers
,”
Science
276
,
2012
2014
(
1997
).
20.
S.
Felton
,
A. M.
Edmonds
,
M. E.
Newton
,
P. M.
Martineau
,
D.
Fisher
,
D. J.
Twitchen
, and
J. M.
Baker
, “
Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond
,”
Phys. Rev. B
79
,
075203
(
2009
).
21.
M.
Lauwers
,
P.
Pichler
,
N. B.
Edelman
,
G. P.
Resch
,
L.
Ushakova
,
M. C.
Salzer
,
D.
Heyers
,
M.
Saunders
,
J.
Shaw
, and
D. A.
Keays
, “
An iron-rich organelle in the cuticular plate of avian hair cells
,”
Curr. Biol.
23
,
924
(
2013
).
22.
Y.
Gossuin
,
P.
Gillis
,
A.
Hocq
,
Q. L.
Vuong
, and
A.
Roch
, “
Magnetic resonance relaxation properties of superparamagnetic particles
,”
WIREs Nanomed. Nanobiotechnol.
1
,
299
310
(
2009
).
23.
S. V.
Stolyar
,
O. A.
Kolenchukova
,
A. V.
Boldyreva
,
N. S.
Kudryasheva
,
Y. V.
Gerasimova
,
A. A.
Krasikov
,
R. N.
Yaroslavtsev
,
O. A.
Bayukov
,
V. P.
Ladygina
, and
E. A.
Birukova
, “
Biogenic ferrihydrite nanoparticles: Synthesis, properties in vitro and in vivo testing and the concentration effect
,”
Biomedicines
9
,
323
(
2021
).
24.
X.
Wang
,
W.
Li
,
R.
Harrington
,
F.
Liu
,
J. B.
Parise
,
X.
Feng
, and
D. L.
Sparks
, “
Effect of ferrihydrite crystallite size on phosphate adsorption reactivity
,”
Environ. Sci. Technol.
47
,
10322
10331
(
2013
).
25.
P.
Jandacka
,
P.
Alexa
,
J.
Pistora
, and
J.
Trojkova
, “
Hypothetical superparamagnetic magnetometer in a pigeon's upper beak probably does not work
,”
Eur. Phys. J. E
36
,
96
(
2013
).
26.
S.
Nimpf
,
E. P.
Malkemper
,
M.
Lauwers
,
L.
Ushakova
,
G.
Nordmann
,
A.
Wenninger-Weinzierl
,
T. R.
Burkard
,
S.
Jacob
,
T.
Heuser
,
G. P.
Resch
, and
D. A.
Keays
, “
Subcellular analysis of pigeon hair cells implicates vesicular trafficking in cuticulosome formation and maintenance
,”
eLife
6
,
19
(
2017
).
27.
S. E.
Lillie
,
D. A.
Broadway
,
N.
Dontschuk
,
S. C.
Scholten
,
B. C.
Johnson
,
S.
Wolf
,
S.
Rachel
,
L. C. L.
Hollenberg
, and
J.-P.
Tetienne
, “
Laser modulation of superconductivity in a cryogenic wide-field nitrogen-vacancy microscope
,”
Nano Lett.
20
,
1855
1861
(
2020
).
28.
T-h
Wu
,
H.
Fu
,
R. A.
Hajjar
,
T.
Suzuki
, and
M.
Mansuripur
, “
Measurement of magnetic anisotropy constant for magneto-optical recording media: A comparison of several techniques
,”
J. Appl. Phys.
73
,
1368
1376
(
1993
).
29.
J.
Li
,
W.
Wu
,
Q.
Liu
, and
Y.
Pan
, “
Magnetic anisotropy, magnetostatic interactions and identification of magnetofossils: Toward detection of magnetofossils
,”
Geochem., Geophys., Geosyst.
13
,
Q10Z51
, (
2012
).
30.
T. M.
Nocera
,
J.
Chen
,
C. B.
Murray
, and
G.
Agarwal
, “
Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles
,”
Nanotechnology
23
,
495704
(
2012
).

Supplementary Material

You do not currently have access to this content.