We investigate electronic transport properties of copper–graphene (Cu–G) composites using a density-functional theory (DFT) framework. Conduction in composites is studied by varying the interfacial distance of copper/graphene/copper (Cu/G/Cu) interface models. Electronic conductivity of the models computed using the Kubo–Greenwood formula shows that the conductivity increases with decreasing Cu–G distance and saturates below a threshold Cu–G distance. The DFT-based Bader charge analysis indicates increasing charge transfer between Cu atoms at the interfacial layers and the graphene with decreasing Cu–G distance. The electronic density of states reveals increasing contributions from both copper and carbon atoms near the Fermi level with decreasing Cu–G interfacial distance. By computing the space-projected conductivity of the Cu/G/Cu models, we show that the graphene forms a bridge to the electronic conduction at small Cu–G distances, thereby enhancing the conductivity.

1.
F.
Heringhaus
and
D.
Raabe
, “
Recent advances in the manufacturing of copper-base composites
,”
J. Mater. Process. Technol.
59
,
367
372
(
1996
).
2.
O.
Bouaziz
,
H. S.
Kim
, and
Y.
Estrin
, “
Architecturing of metal-based composites with concurrent nanostructuring: A new paradigm of materials design
,”
Adv. Eng. Mater.
15
,
336
340
(
2013
).
3.
S.
Bruschi
,
J.
Cao
,
M.
Merklein
, and
J.
Yanagimoto
, “
Forming of metal-based composite parts
,”
CIRP Ann.
70
,
567
588
(
2021
).
4.
M. K.
Singh
and
R. K.
Gautam
, “
Mechanical and tribological properties of plastically deformed copper metal matrix nano composite
,”
Mater. Today: Proc.
5
,
5727
5736
(
2018
).
5.
L.
Weiping
,
L.
Delong
,
F.
Qiang
, and
P.
Chunxu
, “
Conductive enhancement of copper/graphene composites based on a high-quality graphene
,”
RSC Adv.
5
,
80428
80433
(
2015
).
6.
H.
Rho
,
Y. S.
Jang
,
S.
Kim
,
S.
Bae
,
T.-W.
Kim
,
D. S.
Lee
,
J.-S.
Ha
, and
S. H.
Lee
, “Porous copper-graphene heterostructures for cooling electronic devices,”
Nanoscale
9
(
22
),
7565
7569
(
2017
).
7.
Z.
An
,
J.
Li
,
A.
Kikuchi
,
Z.
Wang
,
Y.
Jiang
, and
T.
Ono
, “
Mechanically strengthened graphene-cu composite with reduced thermal expansion towards interconnect applications
,”
Microsystems Nanoeng.
5
,
20
(
2019
).
8.
J.
Yang
,
Y.
He
,
X.
Zhang
,
W.
Yang
,
Y.
Li
,
X.
Li
,
Q.
Chen
,
X.
Chen
,
K.
Du
, and
Y.
Yan
, “
Improving the electrical conductivity of copper/graphene composites by reducing the interfacial impurities using spark plasma sintering diffusion bonding
,”
J. Mater. Res. Technol.
15
,
3005
3015
(
2021
).
9.
J.
Hwang
,
T.
Yoon
,
S. H.
Jin
,
J.
Lee
,
T.-S.
Kim
,
S. H.
Hong
, and
S.
Jeon
, “
Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process
,”
Adv. Mater.
25
,
6724
6729
(
2013
).
10.
T.
Ellis
,
I.
Anderson
,
H.
Downing
, and
J.
Verhoeven
, “
Deformation-processed wire prepared from gas-atomized Cu-Nb alloy powders
,”
Metallurgical Trans. A
24
,
21
26
(
1993
).
11.
D. M.
Felicia
,
R.
Rochiem
, and
S. M.
Laia
, “
The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (cu) casting product
,”
AIP Conf. Proc.
1945
,
020075
(
2018
).
12.
D.
Kuhlmann-Wilsdorf
, “
Theory of plastic deformation: Properties of low energy dislocation structures
,”
Mater. Sci. Eng.: A
113
,
1
41
(
1989
).
13.
K. S.
Kappagantula
,
J. A.
Smith
,
A. K.
Nittala
, and
F. F.
Kraft
, “
Macro copper-graphene composites with enhanced electrical conductivity
,”
J. Alloys Compd.
894
,
162477
(
2022
).
14.
C.
Pan
,
A. P. S.
Gaur
,
M.
Lynn
,
M. P.
Olson
,
G.
Ouyang
, and
J.
Cui
, “
Enhanced electrical conductivity in graphene-copper multilayer composite
,”
AIP Adv.
12
,
015310
(
2022
).
15.
L.
Zheng
,
H.
Zheng
,
D.
Huo
,
F.
Wu
,
L.
Shao
,
P.
Zheng
,
Y.
Jiang
,
X.
Zheng
,
X.
Qiu
,
Y.
Liu
 et al., “
N-doped graphene-based copper nanocomposite with ultralow electrical resistivity and high thermal conductivity
,”
Sci. Rep.
8
,
9248
(
2018
).
16.
C. M.
Orofeo
,
H.
Hibino
,
K.
Kawahara
,
Y.
Ogawa
,
M.
Tsuji
,
K.-I.
Ikeda
,
S.
Mizuno
, and
H.
Ago
, “
Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene
,”
Carbon
50
,
2189
2196
(
2012
).
17.
L.
Banszerus
,
M.
Schmitz
,
S.
Engels
,
J.
Dauber
,
M.
Oellers
,
F.
Haupt
,
K.
Watanabe
,
T.
Taniguchi
,
B.
Beschoten
, and
C.
Stampfer
, “
Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper
,”
Sci. Adv.
1
,
e1500222
(
2015
).
18.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
19.
D. A.
Greenwood
, “
The boltzmann equation in the theory of electrical conduction in metals
,”
Proc. Phys. Soc.
71
,
585
596
(
1958
).
20.
R. M.
Martin
,
Electronic Structure
(
Cambridge University Press
,
Cambridge
,
2008
).
21.
P. B.
Allen
and
J. Q.
Broughton
,
J. Phys. Chem.
91
,
4964
(
1987
).
22.
G.
Galli
,
R. M.
Martin
,
R.
Car
, and
M.
Parrinello
,
Phys. Rev. Lett.
63
,
988
(
1989
).
23.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
, “
A fast and robust algorithm for bader decomposition of charge density
,”
Comput. Mater. Sci.
36
,
354
360
(
2006
).
24.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
25.
K.
Prasai
,
K. N.
Subedi
,
K.
Ferris
,
P.
Biswas
, and
D. A.
Drabold
, “
Spatial projection of electronic conductivity: The example of conducting bridge memory materials
,”
Phys. Status Solidi: Rapid Res. Lett.
12
,
1800238
(
2018
).
26.
K. N.
Subedi
,
K.
Kappagantula
,
F.
Kraft
,
A.
Nittala
, and
D. A.
Drabold
, “
Electrical conduction processes in aluminum: Defects and phonons
,”
Phys. Rev. B
105
,
104114
(
2022
).
27.
R.
Thapa
,
C.
Ugwumadu
,
K.
Nepal
,
J.
Trembly
, and
D. A.
Drabold
, “
Ab initio simulation of amorphous graphite
,”
Phys. Rev. Lett.
128
,
236402
(
2022
).
28.
K. N.
Subedi
,
K.
Prasai
,
M. N.
Kozicki
, and
D. A.
Drabold
, “
Structural origins of electronic conduction in amorphous copper-doped alumina
,”
Phys. Rev. Mater.
3
,
065605
(
2019
).
29.
K. N.
Subedi
,
K.
Prasai
, and
D. A.
Drabold
,
Phys. Status Solidi B
258
,
2000438
(
2021
).
30.
T. L.
Yang
,
L.
Yang
,
H.
Liu
,
H.
Zhou
,
S.
Peng
,
X.
Zhou
,
F.
Gao
, and
X. T.
Zu
, “
Ab initio study of stability and migration of point defects in copper-graphene layered composite
,”
J. Alloys Compd.
692
,
49
58
(
2017
).
31.
N. A.
Lanzillo
,
J. B.
Thomas
,
B.
Watson
,
M.
Washington
, and
S. K.
Nayak
, “
Pressure-enabled phonon engineering in metals
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
8712
8716
(
2014
).
32.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
33.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
1396
(
1997
).
35.
A.
Belmonte
 et al., “
Operating-current dependence of the Cu-mobility requirements in oxide-based conductive-bridge RAM
,”
IEEE Elec. Devices Lett.
36
(
8
),
775
777
(
2015
).
36.
D.
Knyazev
and
P.
levashov
,
Comput. Mater. Sci.
79
,
817
(
2013
).
37.
L.
Calder'm
,
V.
Karaseiv
, and
S.
Trickey
,
Comput. Phys. Commun.
221
,
118
(
2017
).
38.
P.
Bulanchuk
, “On the delta function broadening in the Kubo-Greenwood equation,”
Comput. Phys. Commun.
261
,
107714
(
2021
).
39.
N.
Mott
and
E.
Davis
,
Electronic Processes in Non-Crystalline Materials
, 2nd ed. (
Clarendon Press
,
Oxford
,
1979
).
40.
B.
Mortazavi
,
E. V.
Podryabinkin
,
S.
Roche
,
T.
Rabczuk
,
X.
Zhuang
, and
A. V.
Shapeev
, “
Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures
,”
Mater. Horiz.
7
,
2359
2367
(
2020
).
You do not currently have access to this content.