Quantum devices often suffer from reflections and noise during readout, a problem traditionally addressed by magneto-optical isolators and circulators. However, these solutions are hindered by limited bandwidth, low tunability, high losses, and incompatibility with planar technologies like circuit QED. To overcome these challenges, we introduce an approach to quantum non-reciprocity, leveraging the inherent nonlinearity of qubits and spatial symmetry disruption. Our method transforms a circuit with Lorentz-type qubits into one with Fano-type qubits, which exhibit an asymmetric spectral response. This transformation leads to a significant enhancement in isolation (up to 40 dB) and a doubling of spectral bandwidth (up to 200 MHz). We base our analysis on realistic circuit parameters and substantiate it with existing experimental results and comprehensive quantum simulations. Our research paves the way for creating compact, high-performance, planar-compatible non-reciprocal quantum devices. These devices could revolutionize quantum computing, communication, and sensing by offering improved noise protection and broader bandwidth.

1.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G. S. L.
Brandao
,
D. A.
Buell
,
B.
Burkett
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
R.
Collins
,
W.
Courtney
,
A.
Dunsworth
,
E.
Farhi
,
B.
Foxen
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
R.
Graff
,
K.
Guerin
,
S.
Habegger
,
M. P.
Harrigan
,
M. J.
Hartmann
,
A.
Ho
,
M.
Hoffmann
,
T.
Huang
,
T. S.
Humble
,
S. V.
Isakov
,
E.
Jeffrey
,
Z.
Jiang
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
P. V.
Klimov
,
S.
Knysh
,
A.
Korotkov
,
F.
Kostritsa
,
D.
Landhuis
,
M.
Lindmark
,
E.
Lucero
,
D.
Lyakh
,
S.
Mandrà
,
J. R.
McClean
,
M.
McEwen
,
A.
Megrant
,
X.
Mi
,
K.
Michielsen
,
M.
Mohseni
,
J.
Mutus
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
M. Y.
Niu
,
E.
Ostby
,
A.
Petukhov
,
J. C.
Platt
,
C.
Quintana
,
E. G.
Rieffel
,
P.
Roushan
,
N. C.
Rubin
,
D.
Sank
,
K. J.
Satzinger
,
V.
Smelyanskiy
,
K. J.
Sung
,
M. D.
Trevithick
,
A.
Vainsencher
,
B.
Villalonga
,
T.
White
,
Z. J.
Yao
,
P.
Yeh
,
A.
Zalcman
,
H.
Neven
, and
J. M.
Martinis
,
Nature
574
,
505
(
2019
).
3.
H. P.
Paudel
,
M.
Syamlal
,
S. E.
Crawford
,
Y.-L.
Lee
,
R. A.
Shugayev
,
P.
Lu
,
P. R.
Ohodnicki
,
D.
Mollot
, and
Y.
Duan
,
ACS Eng. Au
2
,
151
(
2022
).
4.
J. C.
Bardin
,
D. H.
Slichter
, and
D. J.
Reilly
,
IEEE J. Microwaves
1
,
403
(
2021
).
5.
Y. Y.
Gao
,
M. A.
Rol
,
S.
Touzard
, and
C.
Wang
,
PRX Quantum
2
,
040202
(
2021
).
6.
D. M.
Pozar
,
Microwave Engineering
,
4th ed
. (
Wiley India
,
New Delhi
,
2017
).
7.
S. V.
Kutsaev
,
A.
Krasnok
,
S. N.
Romanenko
,
A. Y.
Smirnov
,
K.
Taletski
, and
V. P.
Yakovlev
,
Adv. Photonics Res.
2
,
2000104
(
2021
).
8.
A.
Kord
,
D. L.
Sounas
, and
A.
Alu
,
Proc. IEEE
108
,
1728
(
2020
).
9.
V. S.
Asadchy
,
C.
Guo
,
B.
Zhao
, and
S.
Fan
,
Adv. Opt. Mater.
8
,
2000100
(
2020
).
10.
A. C.
Mahoney
,
J. I.
Colless
,
S. J.
Pauka
,
J. M.
Hornibrook
,
J. D.
Watson
,
G. C.
Gardner
,
M. J.
Manfra
,
A. C.
Doherty
, and
D. J.
Reilly
,
Phys. Rev. X
7
,
011007
(
2017
).
11.
J.
Wu
,
Y.
Xiang
, and
X.
Dai
,
Results Phys.
46
,
106290
(
2023
).
12.
J.
Li
,
A. K.
Harter
,
J.
Liu
,
L.
de Melo
,
Y. N.
Joglekar
, and
L.
Luo
,
Nat. Commun.
10
,
855
(
2019
).
13.
D. L.
Sounas
and
A.
Alù
,
Nat. Photonics
11
,
774
(
2017
).
14.
L.
Ranzani
and
J.
Aumentado
,
IEEE Microwave Mag.
20
,
112
(
2019
).
15.
F.
Fratini
,
E.
Mascarenhas
,
L.
Safari
,
J.-P.
Poizat
,
D.
Valente
,
A.
Auffves
,
D.
Gerace
, and
M.
Santos
,
Phys. Rev. Lett.
113
,
243601
(
2014
).
16.
C.
Müller
,
J.
Combes
,
A. R.
Hamann
,
A.
Fedorov
, and
T. M.
Stace
,
Phys. Rev. A
96
,
053817
(
2017
).
17.
J.
Dai
,
A.
Roulet
,
H. N.
Le
, and
V.
Scarani
,
Phys. Rev. A
92
,
063848
(
2015
).
18.
A.
Rosario Hamann
,
C.
Müller
,
M.
Jerger
,
M.
Zanner
,
J.
Combes
,
M.
Pletyukhov
,
M.
Weides
,
T. M.
Stace
, and
A.
Fedorov
,
Phys. Rev. Lett.
121
,
123601
(
2018
).
19.
N.
Nefedkin
,
M.
Cotrufo
,
A.
Krasnok
, and
A.
Al
,
Adv. Quantum Technol.
5
,
2100112
(
2022
).
20.
D. L.
Sounas
,
J.
Soric
, and
A.
Alù
,
Nat. Electron.
1
,
113
(
2018
).
21.
M. F.
Gely
and
G. A.
Steele
,
New J. Phys.
22
,
013025
(
2020
).
23.
X.
Gu
,
A. F.
Kockum
,
A.
Miranowicz
,
Y-x
Liu
, and
F.
Nori
,
Phys. Rep.
718–719
,
1
(
2017
).
24.
A.
Blais
,
A. L.
Grimsmo
,
S. M.
Girvin
, and
A.
Wallraff
,
Rev. Mod. Phys.
93
,
025005
(
2021
).
25.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
,
Appl. Phys. Rev.
6
,
021318
(
2019
).
26.
J. Q.
You
and
F.
Nori
,
Nature
474
,
589
(
2011
).
27.
A.
Blais
,
R.-S.
Huang
,
A.
Wallraff
,
S. M.
Girvin
, and
R. J.
Schoelkopf
,
Phys. Rev. A
69
,
062320
(
2004
).
28.
O.
Naaman
and
J.
Aumentado
,
PRX Quantum
3
,
020201
(
2022
).
29.
T.
Sweetnam
,
D.
Banys
,
V.
Gilles
,
M. A.
McCulloch
, and
L.
Piccirillo
,
Supercond. Sci. Technol.
35
,
095011
(
2022
).
30.
K.
Peng
,
R.
Poore
,
P.
Krantz
,
D. E.
Root
, and
K. P.
O'Brien
, arXiv:2211.05328 (
2022
).
31.
Y.
Shi
,
Z.
Yu
, and
S.
Fan
,
Nat. Photonics
9
,
388
(
2015
).
32.
G.
D'Aguanno
,
D. L.
Sounas
,
H. M.
Saied
, and
A.
Alù
,
Appl. Phys. Lett.
114
,
181102
(
2019
).
33.
R.
Kwende
,
T.
White
, and
O.
Naaman
,
Appl. Phys. Lett.
122
(
22
),
224001
(
2023
).
34.
A.
Alvarez-Melcon
,
X.
Wu
,
J.
Zang
,
X.
Liu
, and
J. S.
Gomez-Diaz
, “Coupling Matrix Representation of Nonreciprocal Filters Based on Time-Modulated Resonators,” in
IEEE Transactions on Microwave Theory and Techniques
(
IEEE
,
2019
), vol.
67
, no.
12
, pp.
4751
4763
.
35.
X.
Wu
,
X.
Liu
,
M. D.
Hickle
,
D.
Peroulis
,
J. S.
Gómez-Díaz
, and
A. Álvare.
Melcón
, “
Isolating Bandpass Filters Using Time-Modulated Resonators
,” in
IEEE Transactions on Microwave Theory and Techniques
(IEEE, 2019), Vol. 67, No. 6, pp. 2331–2345.
You do not currently have access to this content.