Trapped-ion quantum information processing may benefit from qubits encoded in isotopes that are practically available in only small quantities, e.g., due to low natural abundance or radioactivity. Laser ablation provides a method of controllably liberating neutral atoms or ions from low-volume targets, but energetic ablation products can be difficult to confine in the small ion-electrode distance, micron-scale microfabricated traps amenable to high-speed, high-fidelity manipulation of ion arrays. Here, we investigate ablation-based ion loading into surface-electrode traps of different sizes to test a model describing ion loading probability as a function of effective trap volume and other trap parameters. We characterize loading of ablated barium from a metallic source in two cryogenic surface-electrode traps with 730 and 50 μm ion-electrode distances. Our loading rate agrees with a predictive analytical model, providing insight for the confinement of limited-quantity species of interest for quantum computing, simulation, and sensing.

1.
C.
Auchter
,
T. W.
Noel
,
M. R.
Hoffman
,
S. R.
Williams
, and
B. B.
Blinov
, “
Measurement of the branching fractions and lifetime of the 5 D 5 / 2 level of Ba +
,”
Phys. Rev. A
90
,
060501
(
2014
).
2.
D.
Hucul
,
J. E.
Christensen
,
E. R.
Hudson
, and
W. C.
Campbell
, “
Spectroscopy of a synthetic trapped ion qubit
,”
Phys. Rev. Lett.
119
,
100501
(
2017
).
3.
J. E.
Christensen
,
D.
Hucul
,
W. C.
Campbell
, and
E. R.
Hudson
, “
High-fidelity manipulation of a qubit enabled by a manufactured nucleus
,”
npj Quantum Inf.
6
,
35
(
2020
).
4.
B. M.
White
,
P. J.
Low
,
Y.
de Sereville
,
M. L.
Day
,
N.
Greenberg
,
R.
Rademacher
, and
C.
Senko
, “
Isotope-selective laser ablation ion-trap loading of 137 Ba + using a BaCl 2 target
,”
Phys. Rev. A
105
,
033102
(
2022
).
5.
C.
Langer
,
R.
Ozeri
,
J. D.
Jost
,
J.
Chiaverini
,
B.
DeMarco
,
A.
Ben-Kish
,
R. B.
Blakestad
,
J.
Britton
,
D. B.
Hume
,
W. M.
Itano
,
D.
Leibfried
,
R.
Reichle
,
T.
Rosenband
,
T.
Schaetz
,
P. O.
Schmidt
, and
D. J.
Wineland
, “
Long-lived qubit memory using atomic ions
,”
Phys. Rev. Lett.
95
,
060502
(
2005
).
6.
R. G.
DeVoe
and
C.
Kurtsiefer
, “
Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap
,”
Phys. Rev. A
65
,
063407
(
2002
).
7.
A. V.
Steele
,
L. R.
Churchill
,
P. F.
Griffin
, and
M. S.
Chapman
, “
Photoionization and photoelectric loading of barium ion traps
,”
Phys. Rev. A
75
,
053404
(
2007
).
8.
B.
Wang
,
J. W.
Zhang
,
C.
Gao
, and
L. J.
Wang
, “
Highly efficient and isotope selective photo-ionization of barium atoms using diode laser and led light
,”
Opt. Express
19
,
16438
16447
(
2011
).
9.
G.
Leschhorn
,
T.
Hasegawa
, and
T.
Schaetz
, “
Efficient photo-ionization for barium ion trapping using a dipole-allowed resonant two-photon transition
,”
Appl. Phys. B.
108
,
159
165
(
2012
).
10.
D. R.
Leibrandt
,
R. J.
Clark
,
J.
Labaziewicz
,
P.
Antohi
,
W.
Bakr
,
K. R.
Brown
, and
I. L.
Chuang
, “
Laser ablation loading of a surface-electrode ion trap
,”
Phys. Rev. A
76
,
055403
(
2007
).
11.
K.
Zimmermann
,
M. V.
Okhapkin
,
O. A.
Herrera-Sancho
, and
E.
Peik
, “
Laser ablation loading of a radiofrequency ion trap
,”
Appl. Phys. B
107
,
883
889
(
2012
).
12.
H.
Shao
,
M.
Wang
,
M.
Zeng
,
H.
Guan
, and
K.
Gao
, “
Laser ablation and two-step photo-ionization for the generation of 40Ca+
,”
J. Phys. Commun.
2
,
095019
(
2018
).
13.
G.
Vrijsen
,
Y.
Aikyo
,
R. F.
Spivey
,
I. V.
Inlek
, and
J.
Kim
, “
Efficient isotope-selective pulsed laser ablation loading of 174Yb+ ions in a surface electrode trap
,”
Opt. Express
27
,
33907
33914
(
2019
).
14.
J. E.
Christensen
, “
High-fidelity operation of a radioactive trapped-ion qubit, 133Ba+
,” Ph.D. thesis (
UCLA
,
Los Angeles, CA
,
2020
).
15.
J.
Chiaverini
,
R. B.
Blakestad
,
J.
Britton
,
J. D.
Jost
,
C.
Langer
,
D.
Leibfried
,
R.
Ozeri
, and
D. J.
Wineland
, “
Surface-electrode architecture for ion-trap quantum information processing
,”
Quant. Inf. Comput.
5
,
419
439
(
2005
).
16.
K. K.
Mehta
,
A. M.
Eltony
,
C. D.
Bruzewicz
,
I. L.
Chuang
,
R. J.
Ram
,
J. M.
Sage
, and
J.
Chiaverini
, “
Ion traps fabricated in a CMOS foundry
,”
Appl. Phys. Lett.
105
,
044103
(
2014
).
17.
J.
Stuart
,
R.
Panock
,
C.
Bruzewicz
,
J.
Sedlacek
,
R.
McConnell
,
I.
Chuang
,
J.
Sage
, and
J.
Chiaverini
, “
Chip-integrated voltage sources for control of trapped ions
,”
Phys. Rev. Appl.
11
,
024010
(
2019
).
18.
K. K.
Mehta
,
C.
Zhang
,
M.
Malinowski
,
T.-L.
Nguyen
,
M.
Stadler
, and
J. P.
Home
, “
Integrated optical multi-ion quantum logic
,”
Nature
586
,
533
537
(
2020
).
19.
R. J.
Niffenegger
,
J.
Stuart
,
C.
Sorace-Agaskar
,
D.
Kharas
,
S.
Bramhavar
,
C. D.
Bruzewicz
,
W.
Loh
,
R. T.
Maxson
,
R.
McConnell
,
D.
Reens
,
G. N.
West
,
J. M.
Sage
, and
J.
Chiaverini
, “
Integrated multi-wavelength control of an ion qubit
,”
Nature
586
,
538
542
(
2020
).
20.
M.
Ivory
,
W. J.
Setzer
,
N.
Karl
,
H.
McGuinness
,
C.
DeRose
,
M.
Blain
,
D.
Stick
,
M.
Gehl
, and
L. P.
Parazzoli
, “
Integrated optical addressing of a trapped ytterbium ion
,”
Phys. Rev. X
11
,
041033
(
2021
).
21.
S. L.
Todaro
,
V. B.
Verma
,
K. C.
McCormick
,
D. T. C.
Allcock
,
R. P.
Mirin
,
D. J.
Wineland
,
S. W.
Nam
,
A. C.
Wilson
,
D.
Leibfried
, and
D. H.
Slichter
, “
State readout of a trapped ion qubit using a trap-integrated superconducting photon detector
,”
Phys. Rev. Lett.
126
,
010501
(
2021
).
22.
W. J.
Setzer
,
M.
Ivory
,
O.
Slobodyan
,
J. W.
Van Der Wall
,
L. P.
Parazzoli
,
D.
Stick
,
M.
Gehl
,
M. G.
Blain
,
R. R.
Kay
, and
H. J.
McGuinness
, “
Fluorescence detection of a trapped ion with a monolithically integrated single-photon-counting avalanche diode
,”
Appl. Phys. Lett.
119
,
154002
(
2021
).
23.
D.
Reens
,
M.
Collins
,
J.
Ciampi
,
D.
Kharas
,
B. F.
Aull
,
K.
Donlon
,
C. D.
Bruzewicz
,
B.
Felton
,
J.
Stuart
,
R. J.
Niffenegger
,
P.
Rich
,
D.
Braje
,
K. K.
Ryu
,
J.
Chiaverini
, and
R.
McConnell
, “
High-fidelity ion state detection using trap-integrated avalanche photodiodes
,”
Phys. Rev. Lett.
129
,
100502
(
2022
).
24.
J. M.
Wilson
,
J. N.
Tilles
,
R. A.
Haltli
,
E.
Ou
,
M. G.
Blain
,
S. M.
Clark
, and
M. C.
Revelle
, “
In situ detection of RF breakdown on microfabricated surface ion traps
,”
J. Appl. Phys.
131
,
134401
(
2022
).
25.
J. M.
Sage
,
A. J.
Kerman
, and
J.
Chiaverini
, “
Loading of a surface-electrode ion trap from a remote, precooled source
,”
Phys. Rev. A
86
,
013417
(
2012
).
26.
J.
Chiaverini
and
J. M.
Sage
, “
Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range
,”
Phys. Rev. A
89
,
012318
(
2014
).
27.
C. D.
Bruzewicz
,
R.
McConnell
,
J.
Chiaverini
, and
J. M.
Sage
, “
Scalable loading of a two-dimensional trapped-ion array
,”
Nat. Commun.
7
,
13005
(
2016
).
28.
J. M.
Stuart
, “
Integrated technologies and control techniques for trapped ion array architectures
,” Ph.D. thesis (
MIT
,
Cambridge, MA
,
2021
).
29.
F.
Splatt
,
M.
Harlander
,
M.
Brownnutt
,
F.
Zähringer
,
R.
Blatt
, and
W.
Hänsel
, “
Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap
,”
New J. Phys.
11
,
103008
(
2009
).
30.
M.
Harlander
,
M.
Brownnutt
,
W.
Hänsel
, and
R.
Blatt
, “
Trapped-ion probing of light-induced charging effects on dielectrics
,”
New J. Phys.
12
,
093035
(
2010
).
31.
J. A.
Sedlacek
,
J.
Stuart
,
D. H.
Slichter
,
C. D.
Bruzewicz
,
R.
McConnell
,
J. M.
Sage
, and
J.
Chiaverini
, “
Evidence for multiple mechanisms underlying surface electric-field noise in ion traps
,”
Phys. Rev. A
98
,
063430
(
2018
).
32.
M. G.
House
, “
Analytic model for electrostatic fields in surface-electrode ion traps
,”
Phys. Rev. A
78
,
033402
(
2008
).
33.
D. J.
Wineland
,
C.
Monroe
,
W. M.
Itano
,
D.
Leibfried
,
B. E.
King
, and
D. M.
Meekhof
, “
Experimental issues in coherent quantum-state manipulation of trapped ions
,”
J. Res. NIST
103
,
259
328
(
1998
).
34.
D. J.
Berkeland
,
J. D.
Miller
,
J. C.
Bergquist
,
W. M.
Itano
, and
D. J.
Wineland
, “
Minimization of ion micromotion in a Paul trap
,”
J. Appl. Phys.
83
,
5025
5033
(
1998
).
35.
A. H.
Nizamani
and
W. K.
Hensinger
, “
Optimum electrode configurations for fast ion separation in microfabricated surface ion traps
,”
Appl. Phys. B
106
,
327
338
(
2012
).
36.
Y.
Ibaraki
,
U.
Tanaka
, and
S.
Urabe
, “
Detection of parametric resonance of trapped ions for micromotion compensation
,”
Appl. Phys. B
105
,
219
223
(
2011
).
37.
M.
Fan
,
C. A.
Holliman
,
X.
Shi
,
H.
Zhang
,
M. W.
Straus
,
X.
Li
,
S. W.
Buechele
, and
A. M.
Jayich
, “
Optical mass spectrometry of cold RaOH + and RaOCH 3 +
,”
Phys. Rev. Lett.
126
,
023002
(
2021
).
38.
A. H.
Burrell
, “
High fidelity readout of trapped ion qubits
,” Ph.D. thesis (
Oxford University
,
Oxford, UK
,
2010
).

Supplementary Material

You do not currently have access to this content.