An extension of fluctuation–dissipation theorem is used to derive a “speed limit” theorem for nonlinear electronic devices. This speed limit provides a lower bound on the dissipation that is incurred when transferring a given amount of electric charge in a certain amount of time with a certain noise level (average variance of the current). This bound, which implies a high energy dissipation for fast, low-noise operations (such as switching a bit in a digital memory), brings together recent results of stochastic thermodynamics into a form that is usable for practical nonlinear electronic circuits, as we illustrate on a switching circuit made of an nMOS pass gate in a state-of-the-art industrial technology.

1.
D.
Bol
,
G.
de Streel
, and
D.
Flandre
, in
IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)
(
IEEE
,
2015
), pp.
1
3
.
2.
L.
Van Brandt
,
B. K.
Esfeh
,
V.
Kilchytska
, and
D.
Flandre
, in
Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Grenoble, France
(IEEE,
2019
), pp.
1
4
.
3.
N.
Freitas
,
J.-C.
Delvenne
, and
M.
Esposito
,
Phys. Rev. X
11
,
031064
(
2021
).
4.
N.
Freitas
,
K.
Proesmans
, and
M.
Esposito
,
Phys. Rev. E
105
,
034107
(
2022
).
5.
L.
Van Brandt
,
F.
Silveira
,
J.-C.
Delvenne
, and
D.
Flandre
, in
9th Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Tarragona, Spain
(IEEE,
2023
).
6.
R.
Landauer
,
IBM J. Res. Dev.
5
,
183
(
1961
).
7.
L.
Peliti
and
S.
Pigolotti
,
Stochastic Thermodynamics: An Introduction
(
Princeton University Press
,
2021
).
8.
J. M.
Horowitz
and
T. R.
Gingrich
,
Nat. Phys.
16
,
15
(
2020
).
9.
G.
Falasco
,
M.
Esposito
, and
J.-C.
Delvenne
,
New J. Phys.
22
,
053046
(
2020
).
10.
N.
Shiraishi
,
K.
Funo
, and
K.
Saito
,
Phys. Rev. Lett.
121
,
070601
(
2018
).
11.
L.
Van Brandt
and
J.-C.
Delvenne
, in
23rd IEEE International Conference on Nanotechnology (IEEE-NANO 2023
) (
IEEE
,
2023
).
12.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
13.
J. B.
Johnson
,
Phys. Rev.
32
,
97
(
1928
).
14.
H.
Nyquist
,
Phys. Rev.
32
,
110
(
1928
).
15.
J. L.
Wyatt
and
G. J.
Coram
,
IEEE Trans. Electron Devices
46
,
184
(
1999
).
16.
C.
Jarzynski
,
Phys. Rev. Lett.
78
,
2690
(
1997
).
17.
J.-C.
Delvenne
and
L.
Van Brandt
, in 22nd IFAC World Congress 2023, Yokohama, Japan (Elsevier, to be published); arXiv:2208.14506 (
2023
).
18.
G.
Falasco
,
M.
Esposito
, and
J.-C.
Delvenne
,
J. Phys. A: Math. Theor.
55
,
124002
(
2022
).
19.
A.
Einstein
,
Investigations on the Theory of the Brownian Movement
(
Dover Publications
,
1905
).
20.
R. J.
Baker
,
CMOS Circuit Design, Layout, and Simulation
,
3rd ed
. (
John Wiley & Sons, IEEE Press
,
2010
).
21.
Y.
Tsividis
and
C.
McAndrew
,
Operation and Modeling of the MOS Transistor
, The Oxford Series in Electrical and Computer Engineering Series (
Oxford University Press
,
2011
).
22.
T.
Poiroux
,
O.
Rozeau
,
S.
Martinie
,
P.
Scheer
,
S.
Puget
,
M.
Jaud
,
S. E.
Ghouli
,
J.
Barbé
,
A.
Juge
, and
O.
Faynot
, in
IEEE International Electron Devices Meeting
(
IEEE
,
2013
), pp.
12.4.1
12.4.4
.
23.
A.
Papoulis
,
Probability, Random Variables, and Stochastic Processes
, McGraw-Hill Series in Electrical Engineering (
McGraw-Hill
,
1991
).
24.
G. L.
Snider
,
E. P.
Blair
,
C. C.
Thorpe
,
B. T.
Appleton
,
G. P.
Boechler
,
A. O.
Orlov
, and
C. S.
Lent
, in
12th IEEE International Conference on Nanotechnology (IEEE-NANO)
(
IEEE
,
2012
), pp.
1
6
.
25.
A. O.
Orlov
,
C. S.
Lent
,
C. C.
Thorpe
,
G. P.
Boechler
, and
G. L.
Snider
,
Jpn. J. Appl. Phys., Part 1
51
,
06FE10
(
2012
).
You do not currently have access to this content.