In this study, we conducted a systematic exploration of a micro-electromagnetic vibration energy harvester with a bi-magnet structure and microelectromechanical systems 3D coils. First, we establish a physical model of stiffness and damping characteristics based on the superposition principle for the bi-magnet structure which has also been verified experimentally. Then, we investigate the influence of magnet gap and air gap on the stiffness and the magnetic flux change rate, mainly focusing on the distance and the potential barrier between the two potential wells. Finally, we fabricate and assemble the bi-magnet VEH prototype and tested the output performance under 1 and 6g excitation, which correspond the intra-well vibration and inter-well vibration, respectively. The tested results show that under 1g excitation, the prototype can output 155.38 μW power with 32 Hz half-power bandwidth and 4939.06 μW·Hz integrated power, which are obviously higher than those for mono-magnet under same excitation. When the excitation raises to 6g, the output power is improved to 362.98 μW with the half power bandwidth and integrated power enhanced to 56 Hz and 9289.96 μW·Hz, respectively. The tested results also prove that the structure proposed in this study can significantly enhance the output performance compared with a mono-magnet structure and other published data.

1.
Y.
Shen
and
K.
Lu
,
Energy Convers. Manag.
222
,
113233
(
2020
).
2.
K.
Fan
,
Y.
Zhang
,
H.
Liu
,
M.
Cai
, and
Q.
Tan
,
Renewable Energy
138
,
292
(
2019
).
3.
H.
Fu
,
Z.
Sharif-Khodaei
, and
F.
Aliabadi
,
Appl. Phys. Lett.
114
,
143901
(
2019
).
4.
L.
Tang
and
Y.
Yang
,
Appl. Phys. Lett.
101
,
094102
(
2012
).
5.
K.
Tao
,
L.
Tang
,
J.
Wu
,
S. W.
Lye
,
H.
Chang
, and
J.
Miao
,
J. Microelectromech. Syst.
27
,
276
(
2018
).
6.
F.
Cottone
,
P.
Basset
,
R.
Guillemet
,
D.
Galayko
,
F.
Marty
, and
T.
Bourouina
, in
Proceedings of IEEE International Conference on Micro Electro Mechanical Systems
(
IEEE
,
Taipei
,
2013
), pp.
861
864
.
7.
F.
Qian
,
M. R.
Hajj
, and
L.
Zuo
,
Energy Convers. Manag.
222
,
113174
(
2020
).
8.
K.
Wang
,
X.
Dai
,
X.
Xiang
,
G.
Ding
, and
X.
Zhao
,
Appl. Phys. Lett.
115
,
143904
(
2019
).
9.
P.
Podder
,
P.
Constantino
,
D.
Mallick
, and
S.
Roy
,
J. Phys. Conf. Ser.
660
,
012124
(
2015
).
10.
K.
Tao
,
J.
Wu
,
L.
Tang
,
X.
Xia
,
S. W.
Lye
,
J.
Miao
, and
H.
Xiao
,
J. Micromech. Microeng.
26
,
35020
(
2016
).
11.
D.
Mallick
,
A.
Aman
, and
S.
Roy
,
J. Microelectromech. Syst.
26
,
273
282
(
2017
).
12.
C. B.
Williams
,
C.
Shearwood
,
M. A.
Harradin
,
P. H.
Mellor
,
T. S.
Birch
, and
R. B.
Yates
,
IEE Proc, Circuits. Devices Syst.
148
,
337
342
(
2001
).
13.
H.
Li
,
J.
Liu
,
T.
Xu
,
J.
Xia
,
X.
Tan
, and
Z.
Tao
,
Micromachines
9
,
528
(
2018
).
14.
T.
Xu
,
J.
Sun
,
H.
Wu
,
H.
Li
,
H.
Li
, and
Z.
Tao
,
IEEE Electron Device Lett.
40
,
1816
(
2019
).
15.
Z.
Tao
,
J.
Sun
,
H.
Li
,
Y.
Huang
,
H.
Li
,
T.
Xu
, and
H.
Wu
,
IEEE Electron Device Lett.
41
,
1090
(
2020
).
16.
J.
Sun
,
H.
Li
,
S.
Wu
,
T.
Xu
,
H.
Li
,
H.
Wu
, and
S.
Xia
,
Micromachines
11
,
836
(
2020
).
17.
Z.
Tao
,
H.
Wu
,
H.
Li
,
H.
Li
,
T.
Xu
,
J.
Sun
, and
W.
Wang
,
J. Phys. D: Appl. Phys.
53
,
495503
(
2020
).
18.
H.
Wu
,
Z.
Tao
,
H.
Li
,
T.
Xu
,
W.
Wang
,
J.
Sun
,
W.
Xiao
, and
H.
Li
,
Appl. Phys. Lett.
119
,
213904
(
2021
).
19.
F. C.
Moon
and
Y.-H.
Pao
,
J. Appl. Mech.
36
,
92
100
(
1969
).
20.
R.
Han
,
N.
Wang
,
J.
Wang
,
J.
Gu
, and
X.
Li
,
J. Micromech. Microeng.
31
,
035009
(
2021
).
21.
S.
Sun
,
X.
Dai
,
K.
Wang
,
X.
Xiang
,
G.
Ding
, and
X.
Zhao
,
IEEE Magn. Lett.
9
,
1
4
(
2018
).
22.
M.
Han
,
Z.
Li
,
X.
Sun
, and
H.
Zhang
,
Sens. Actuators, A Phys.
219
,
38
46
(
2014
).
23.
H.
Liu
,
Y.
Qian
, and
C.
Lee
,
Sens. Actuators, A Phys.
204
,
37
(
2013
).
24.
M.
Han
,
Q.
Yuan
,
X.
Sun
, and
H.
Zhang
,
J. Microelectromech. Syst.
23
,
204
(
2014
).
25.
D.
Han
,
M.
Kine
,
T.
Shinshi
, and
S.
Kadota
, in
proceedings of 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications
(
IEEE
,
2019
), pp.
1
4
.
26.
K.
Paul
,
D.
Mallick
, and
S.
Roy
,
IEEE Magn. Lett.
12
,
1
(
2021
).
27.
M. M.
Saleem
,
A. M.
Danish
,
J.
Iqbal
, and
S. A.
Bazaz
,
Microsyst. Technol.
23
,
5477
5489
(
2017
).
28.
Y.
Li
,
J.
Li
,
A.
Yang
,
Y.
Zhang
,
B.
Jiang
, and
D.
Qiao
,
IEEE Trans. Ind. Electron.
68
,
2684
2693
(
2021
).
29.
N.
Wang
,
R.
Han
,
C.
Chen
,
J.
Gu
, and
X.
Li
, in
proceedings of 5th IEEE Electron Devices Technology and Manufacturing Conference EDTM
(
IEEE
,
2021
), pp.
6
8
.
30.
Q.
Zhan
and
E. S.
Kim
,
IEEE Sens. J.
16
,
634
641
(
2016
).
31.
H.
Liu
,
K. K.
How
, and
C.
Lee
,
Appl. Phys. Lett.
104
,
053901
(
2014
).
32.
H.
Liu
,
Y.
Qian
,
N.
Wang
, and
C.
Lee
,
J. Microelectromech. Syst.
23
,
740
749
(
2014
).
You do not currently have access to this content.