The thermal conductivity measurement of films with submicrometer thicknesses is difficult due to their exceptionally low thermal resistance, which makes it challenging to accurately measure the temperature changes that occur as heat flows through the film. Thus, specialized and sensitive measurement techniques are required. 3ω method is a widely used and reliable tool for measuring the thermal conductivity of films. However, the high in-plane thermal conductivity in thin films results in rapid heat dissipation across the thin film, resulting in poor measurement sensitivity and making it difficult to accurately measure the temperature gradient with the traditional 3ω method. Also, the traditional 3ω method requires cross-plane thermal conductivity to derive the in-plane counterpart. Here, we introduce a dual-domain 3ω method that adopts AC-modulated heating and electrode arrays facilitating surface temperature profiling: (1) the sensitivity was significantly improved due to the employment of low-thermal-conductivity-substrate, and (2) cross-plane thermal conductivity is not required for the analysis of in-plane counterpart. This measurement platform allows us to control heat penetration in depth via varied heating frequencies as well as spatial temperature detection through laterally distributed electrodes on the thin film surface. By utilizing the described method, we have determined the in-plane thermal conductivity of a copper film, having a thickness of 300 nm, which was found to be 346 Wm−1K−1 and validated by the Wiedemann–Franz law.

1.
M. S. B.
Hoque
,
Y. R.
Koh
,
J. L.
Braun
,
A.
Mamun
,
Z.
Liu
,
K.
Huynh
,
M. E.
Liao
,
K.
Hussain
,
Z.
Cheng
, and
E. R.
Hoglund
,
ACS Nano
15
(
6
),
9588
9599
(
2021
).
2.
W.
Jang
,
Z.
Chen
,
W.
Bao
,
C. N.
Lau
, and
C.
Dames
,
Nano Lett.
10
(
10
),
3909
3913
(
2010
).
3.
A.
Sood
,
J.
Cho
,
K. D.
Hobart
,
T. I.
Feygelson
,
B. B.
Pate
,
M.
Asheghi
,
D. G.
Cahill
, and
K. E.
Goodson
,
J. Appl. Phys.
119
(
17
),
175103
(
2016
).
4.
F.
Bonaccorso
,
L.
Colombo
,
G.
Yu
,
M.
Stoller
,
V.
Tozzini
,
A. C.
Ferrari
,
R. S.
Ruoff
, and
V.
Pellegrini
,
Science
347
(
6217
),
1246501
(
2015
).
5.
J. S.
Kang
,
M.
Li
,
H.
Wu
,
H.
Nguyen
, and
Y.
Hu
,
Science
361
(
6402
),
575
578
(
2018
).
6.
A. A.
Balandin
,
Nat. Mater.
10
(
8
),
569
581
(
2011
).
7.
D.
Choi
,
N.
Poudel
,
S. B.
Cronin
, and
L.
Shi
,
Appl. Phys. Lett.
110
(
7
),
073104
(
2017
).
8.
A.
Bar-Cohen
and
P.
Wang
,
Microgravity Sci. Technol.
21
,
351
359
(
2009
).
9.
A. L.
Moore
and
L.
Shi
,
Mater. Today
17
(
4
),
163
174
(
2014
).
10.
E.
Pop
,
S.
Sinha
, and
K. E.
Goodson
,
Proc. IEEE
94
(
8
),
1587
1601
(
2006
).
11.
Y.
Fu
,
J.
Hansson
,
Y.
Liu
,
S.
Chen
,
A.
Zehri
,
M. K.
Samani
,
N.
Wang
,
Y.
Ni
,
Y.
Zhang
, and
Z.-B.
Zhang
,
2D Mater.
7
(
1
),
012001
(
2020
).
12.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodson
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
, and
A.
Majumdar
,
Appl. Phys. Rev.
1
(
1
),
011305
(
2014
).
13.
A.
Moridi
,
L.
Zhang
,
W.
Liu
,
S.
Duvall
,
A.
Brawley
,
Z.
Jiang
,
S.
Yang
, and
C.
Li
,
Surf. Coat. Technol.
334
,
233
242
(
2018
).
14.
P.
Jiang
,
B.
Huang
, and
Y. K.
Koh
,
Rev. Sci. Instrum.
87
(
7
),
075101
(
2016
).
15.
R.
Merlin
,
Solid State Commun.
102
(
2–3
),
207
220
(
1997
).
16.
A.
Mansanares
,
J.
Roger
,
D.
Fournier
, and
A.
Boccara
,
Appl. Phys. Lett.
64
(
1
),
4
6
(
1994
).
17.
W.
Claeys
,
S.
Dilhaire
,
V.
Quintard
,
J.
Dom
, and
Y.
Danto
,
Qual. Reliab. Eng. Int.
9
(
4
),
303
308
(
1993
).
18.
S.
Gomès
,
A.
Assy
, and
P. O.
Chapuis
,
Phys. Status Solidi A
212
(
3
),
477
494
(
2015
).
19.
C.
Williams
and
H.
Wickramasinghe
,
Microelectron. Eng.
5
(
1–4
),
509
513
(
1986
).
20.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
(
9
),
930
(
1986
).
21.
H.
Jang
,
C. R.
Ryder
,
J. D.
Wood
,
M. C.
Hersam
, and
D. G.
Cahill
,
Adv. Mater.
29
(
35
),
1700650
(
2017
).
22.
H.
Jang
,
J. D.
Wood
,
C. R.
Ryder
,
M. C.
Hersam
, and
D. G.
Cahill
, arXiv:1510.00051 (
2015
).
23.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
(
11
),
114902
(
2008
).
24.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
(
12
),
5119
5122
(
2004
).
25.
R. G.
Bhardwaj
and
N.
Khare
,
Int. J. Thermophys.
43
(
9
),
139
(
2022
).
26.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
(
2
),
802
808
(
1990
).
28.
A.
Jacquot
,
B.
Lenoir
,
A.
Dauscher
,
M.
Stölzer
, and
J.
Meusel
,
J. Appl. Phys.
91
(
7
),
4733
4738
(
2002
).
29.
T.
Borca-Tasciuc
,
A.
Kumar
, and
G.
Chen
,
Rev. Sci. Instrum.
72
(
4
),
2139
2147
(
2001
).
30.
B.
Feng
,
Z.
Li
, and
X.
Zhang
,
Thin Solid Films
517
(
8
),
2803
2807
(
2009
).
31.
J.
Zheng
,
M. C.
Wingert
,
J.
Moon
, and
R.
Chen
,
Semicond. Sci. Technol.
31
(
8
),
084005
(
2016
).
32.
S.
Yamaguchi
,
T.
Shiga
,
S.
Ishioka
,
T.
Saito
,
T.
Kodama
, and
J.
Shiomi
,
Rev. Sci. Instrum.
92
(
3
),
034902
(
2021
).
33.
M. L.
Bauer
and
P. M.
Norris
,
Rev. Sci. Instrum.
85
(
6
),
064903
(
2014
).
34.
J.-L.
Battaglia
,
C.
Wiemer
, and
M.
Fanciulli
,
J. Appl. Phys.
101
(
10
),
104510
(
2007
).
35.
V.
Tripathi
and
Y.
Loh
,
Phys. Rev. Lett.
96
(
4
),
046805
(
2006
).
36.
P.
Nath
and
K.
Chopra
,
Thin Solid Films
20
(
1
),
53
62
(
1974
).

Supplementary Material

You do not currently have access to this content.