α-RuCl3 is considered to be the top candidate material for the experimental realization of the celebrated Kitaev model, where ground states are quantum spin liquids with interesting fractionalized excitations. It is, however, known that additional interactions beyond the Kitaev model trigger in α-RuCl3 a long-range zigzag antiferromagnetic ground state. In this work, we investigate a nanoflake of α-RuCl3 through guarded high impedance measurements aimed at reaching the regime where the system turns into a zigzag antiferromagnet. We investigated a variety of temperatures (1.45–175 K) and out-of-plane magnetic fields (up to 11 T), finding a clear signature of a structural phase transition at 160 K as reported for thin crystals of α-RuCl3, as well as a thermally activated behavior at temperatures above 30 K, with a characteristic activation energy significantly smaller than the energy gap that we observe for α-RuCl3 bulk crystals through our angle resolved photoemission spectroscopy (ARPES) experiments. Additionally, we found that below 30 K, transport is ruled by Efros–Shklovskii variable range hopping (VRH). Most importantly, our data show that below the magnetic ordering transition known for bulk α-RuCl3 in the frame of the Kitaev–Heisenberg model ( 7 K), there is a clear deviation from VRH or thermal activation transport mechanisms. Our work demonstrates the possibility of reaching, through specialized high impedance measurements, the thrilling ground states predicted for α-RuCl3 at low temperatures in the frame of the Kitaev–Heisenberg model and informs about the transport mechanisms in this material in a wide temperature range.

1.
K. W.
Plumb
,
J. P.
Clancy
,
L. J.
Sandilands
,
V. V.
Shankar
,
Y. F.
Hu
,
K. S.
Burch
,
H.-Y.
Kee
, and
Y.-J.
Kim
, “
α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice
,”
Phys. Rev. B
90
,
041112
(
2014
).
2.
H.-S.
Kim
,
S.
Vijay Shankar
,
A.
Catuneanu
, and
H.-Y.
Kee
, “
Kitaev magnetism in honeycomb RuCl3 with intermediate spin-orbit coupling
,”
Phys. Rev. B
91
,
241110
(
2015
).
3.
H.
Takagi
,
T.
Takayama
,
G.
Jackeli
,
G.
Khaliullin
, and
S. E.
Nagler
, “
Concept and realization of Kitaev quantum spin liquids
,”
Nat. Rev. Phys.
1
,
264
(
2019
).
4.
G.
Jackeli
and
G.
Khaliullin
, “
Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models
,”
Phys. Rev. Lett.
102
,
017205
(
2009
).
5.
M.
Ziatdinov
,
A.
Banerjee
,
A.
Maksov
,
T.
Berlijn
,
W.
Zhou
,
H. B.
Cao
,
J.-Q.
Yan
,
C. A.
Bridges
,
D. G.
Mandrus
,
S. E.
Nagler
,
A. P.
Baddorf
, and
S. V.
Kalinin
, “
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
,”
Nat. Commun.
7
,
13774
(
2016
).
6.
H. B.
Cao
,
A.
Banerjee
,
J.-Q.
Yan
,
C. A.
Bridges
,
M. D.
Lumsden
,
D. G.
Mandrus
,
D. A.
Tennant
,
B. C.
Chakoumakos
, and
S. E.
Nagler
, “
Low-temperature crystal and magnetic structure of α-RuCl3
,”
Phys. Rev. B
93
,
134423
(
2016
).
7.
T.
Sato
,
T.
Yokoya
,
Y.
Naitoh
,
T.
Takahashi
,
K.
Yamada
, and
Y.
Endoh
, “
Pseudogap of optimally doped La1.85Sr0.15CuO4 observed by ultrahigh-resolution photoemission spectroscopy
,”
Phys. Rev. Lett.
83
,
2254
2257
(
1999
).
8.
T.
Susaki
,
Y.
Takeda
,
M.
Arita
,
K.
Mamiya
,
A.
Fujimori
,
K.
Shimada
,
H.
Namatame
,
M.
Taniguchi
,
N.
Shimizu
,
F.
Iga
, and
T.
Takabatake
, “
Temperature-dependent high-resolution photoemission study of the Kondo insulator YbB12
,”
Phys. Rev. Lett.
82
,
992
995
(
1999
).
9.
J. A.
Sears
,
L. E.
Chern
,
S.
Kim
,
P. J.
Bereciartua
,
S.
Francoual
,
Y. B.
Kim
, and
Y.-J.
Kim
, “
Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3
,”
Nat. Phys.
16
,
837
(
2020
).
10.
J. C. V.
Chaloupka
and
G.
Khaliullin
, “
Magnetic anisotropy in the Kitaev model systems Na2IrO3 and RuCl3
,”
Phys. Rev. B
94
,
064435
(
2016
).
11.
J. A.
Sears
,
M.
Songvilay
,
K. W.
Plumb
,
J. P.
Clancy
,
Y.
Qiu
,
Y.
Zhao
,
D.
Parshall
, and
Y.-J.
Kim
, “
Magnetic order in α-RuCl3: A honeycomb-lattice quantum magnet with strong spin-orbit coupling
,”
Phys. Rev. B
91
,
144420
(
2015
).
12.
R. D.
Johnson
,
S. C.
Williams
,
A. A.
Haghighirad
,
J.
Singleton
,
V.
Zapf
,
P.
Manuel
,
I. I.
Mazin
,
Y.
Li
,
H. O.
Jeschke
,
R.
Valentí
, and
R.
Coldea
, “
Monoclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state
,”
Phys. Rev. B
92
,
235119
(
2015
).
13.
Y.
Kubota
,
H.
Tanaka
,
T.
Ono
,
Y.
Narumi
, and
K.
Kindo
, “
Successive magnetic phase transitions in α-RuCl3: XY-like frustrated magnet on the honeycomb lattice
,”
Phys. Rev. B
91
,
094422
(
2015
).
14.
M.
Majumder
,
M.
Schmidt
,
H.
Rosner
,
A. A.
Tsirlin
,
H.
Yasuoka
, and
M.
Baenitz
, “
Anisotropic ru 3 + 4 d 5 magnetism in the α-RuCl3 honeycomb system: Susceptibility, specific heat, and zero-field NMR
,”
Phys. Rev. B
91
,
180401
(
2015
).
15.
Y.
Kasahara
,
T.
Ohnishi
,
Y.
Mizukami
,
O.
Tanaka
,
S.
Ma
,
K.
Sugii
,
N.
Kurita
,
H.
Tanaka
,
J.
Nasu
,
Y.
Motome
,
T.
Shibauchi
, and
Y.
Matsuda
, “
Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid
,”
Nature
559
,
227
(
2018
).
16.
P.
Czajka
,
T.
Gao
,
M.
Hirschberger
,
P.
Lampen-Kelley
,
A.
Banerjee
,
J.
Yan
,
D. G.
Mandrus
,
S. E.
Nagler
, and
N. P.
Ong
, “
Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3
,”
Nat. Phys.
17
,
915
(
2021
).
17.
A.
Kitaev
, “
Anyons in an exactly solved model and beyond
,”
Ann. Phys. (NY)
321
,
2
(
2006
).
18.
X.-G.
Zhou
,
H.
Li
,
Y. H.
Matsuda
,
A.
Matsuo
,
W.
Li
,
N.
Kurita
,
K.
Kindo
, and
H.
Tanaka
, “
Intermediate quantum spin liquid phase in the Kitaev material α-RuCl3 under high magnetic fields up to 100T
,” arXiv:2201.04597 (
2022
).
19.
S.
Trebst
and
C.
Hickey
, “
Kitaev materials
,”
Phys. Rep.
950
,
1
37
(
2022
).
20.
X.
Zhou
,
H.
Li
,
J.
Waugh
,
S.
Parham
,
H.-S.
Kim
,
J.
Sears
,
A.
Gomes
,
H.-Y.
Kee
,
Y.-J.
Kim
, and
D.
Dessau
, “
Angle-resolved photoemission study of the Kitaev candidate α-RuCl3
,”
Phys. Rev. B
94
,
161106
(
2016
).
21.
S.
Sinn
,
C. H.
Kim
,
B. H.
Kim
,
K. D.
Lee
,
C. J.
Won
,
J. S.
Oh
,
M.
Han
,
Y. J.
Chang
,
N.
Hur
,
H.
Sato
,
B.-G.
Park
,
C.
Kim
,
H.-D.
Kim
, and
T. W.
Noh
, “
Electronic structure of the Kitaev material α-RuCl3 probed by photoemission and inverse photoemission spectroscopies
,”
Sci. Rep.
6
,
39544
(
2016
).
22.
S.
Ghatak
,
A. N.
Pal
, and
A.
Ghosh
, “
Nature of electronic states in atomically thin MoS2 field-effect transistors
,”
ACS Nano
5
,
7707
7712
(
2011
).
23.
B.
Shklovskii
and
A.
Efros
,
Electronic Properties of Doped Semiconductors
(
Springer-Verlag
,
Berlin
,
1984
), pp.
228
244
.
24.
H.
Yi
,
B.
Skinner
, and
B. I.
Shklovskii
, “
Conductivity of two-dimensional small gap semiconductors and topological insulators in strong coulomb disorder
,”
JETP
135
,
409
425
(
2022
).
25.
N. F.
Mott
, “
Conduction in non-crystalline materials
,”
Philosoph. Mag., A
19
,
835
852
(
1969
).
26.
D. J.
Rizzo
,
B. S.
Jessen
,
Z.
Sun
,
F. L.
Ruta
,
J.
Zhang
,
J.-Q.
Yan
,
L.
Xian
,
A. S.
McLeod
,
M. E.
Berkowitz
,
K.
Watanabe
,
T.
Taniguchi
,
S. E.
Nagler
,
D. G.
Mandrus
,
A.
Rubio
,
M. M.
Fogler
,
A. J.
Millis
,
J. C.
Hone
,
C. R.
Dean
, and
D. N.
Basov
, “
Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces
,”
Nano Lett.
20
,
8438
8445
(
2020
).
27.
B.
Zhou
,
J.
Balgley
,
P.
Lampen-Kelley
,
J.-Q.
Yan
,
D. G.
Mandrus
, and
E. A.
Henriksen
, “
Evidence for charge transfer and proximate magnetism in graphene–α-RuCl3 heterostructures
,”
Phys. Rev. B
100
,
165426
(
2019
).
28.
A. L.
Efros
and
B. I.
Shklovskii
, “
Coulomb gap and low temperature conductivity of disordered systems
,”
J. Phys. C: Solid State Phys.
8
,
L49
(
1975
).
29.
S.
Reschke
,
F.
Mayr
,
S.
Widmann
,
H.-A. K.
von Nidda
,
V.
Tsurkan
,
M. V.
Eremin
,
S.-H.
Do
,
K.-Y.
Choi
,
Z.
Wang
, and
A.
Loidl
, “
Sub-gap optical response in the Kitaev spin-liquid candidate α-RuCl3
,”
J. Phys.: Condens. Matter
30
,
475604
(
2018
).
30.
A.
Ayari
,
E.
Cobas
,
O.
Ogundadegbe
, and
M. S.
Fuhrer
, “
Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides
,”
J. Appl. Phys.
101
,
014507
(
2007
).
31.
R.
Jayaraman
and
C. G.
Sodini
, “
A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon
,”
IEEE Trans. Electron Devices
36
,
1773
1782
(
1989
).
32.
J.
Rodriguez
,
G.
Lopez
,
F.
Ramirez
,
N. P.
Breznay
,
R.
Kealhofer
,
V.
Nagarajan
,
D.
Latzke
,
S.
Wilson
,
N.
Marrufo
,
P.
Santiago
,
J.
Lara
,
A.
Diego
,
E.
Molina
,
D.
Rosser
,
H.
Tavassol
,
A.
Lanzara
,
J. G.
Analytis
, and
C.
Ojeda-Aristizabal
, “
Competition between magnetic order and charge localization in Na2IrO3 thin crystal devices
,”
Phys. Rev. B
101
,
235415
(
2020
).
33.
L.
Moreschini
,
I.
Lo Vecchio
,
N. P.
Breznay
,
S.
Moser
,
S.
Ulstrup
,
R.
Koch
,
J.
Wirjo
,
C.
Jozwiak
,
K. S.
Kim
,
E.
Rotenberg
,
A.
Bostwick
,
J. G.
Analytis
, and
A.
Lanzara
, “
Quasiparticles and charge transfer at the two surfaces of the honeycomb iridate Na2IrO3
,”
Phys. Rev. B
96
,
161116
(
2017
).
34.
S.
Mashhadi
,
D.
Weber
,
L. M.
Schoop
,
A.
Schulz
,
B. V.
Lotsch
,
M.
Burghard
, and
K.
Kern
, “
Electrical transport signature of the magnetic fluctuation-structure relation in α-RuCl3 nanoflakes
,”
Nano Lett.
18
,
3203
3208
(
2018
).
35.
B. I.
Shklovskii
, “
Hopping conduction in semiconductors subjected to a strong electric field
,”
Sov. Phys. Semicond.
6
,
1964
1967
(
1973
).
36.
D.
Yu
,
C.
Wang
,
B. L.
Wehrenberg
, and
P.
Guyot-Sionnest
, “
Variable range hopping conduction in semiconductor nanocrystal solids
,”
Phys. Rev. Lett.
92
,
216802
(
2004
).
37.
E.
Levin
and
B.
Shklovskii
, “
Low-temperature hopping conduction in strong electric fields. Numerical experiment a computer
,”
Sov. Phys. Semicond.
18
,
534
539
(
1984
).
38.
I. I.
Mazin
,
H. O.
Jeschke
,
K.
Foyevtsova
,
R.
Valentí
, and
D. I.
Khomskii
, “
Na2IrO3 as a molecular orbital crystal
,”
Phys. Rev. Lett.
109
,
197201
(
2012
).
39.
K.
Foyevtsova
,
H. O.
Jeschke
,
I. I.
Mazin
,
D. I.
Khomskii
, and
R.
Valentí
, “
Ab initio analysis of the tight-binding parameters and magnetic interactions in Na2IrO3
,”
Phys. Rev. B
88
,
035107
(
2013
).
40.
Y.
Li
,
K.
Foyevtsova
,
H. O.
Jeschke
, and
R.
Valentí
, “
Analysis of the optical conductivity for A2IrO3 (A = Na, Li) from first principles
,”
Phys. Rev. B
91
,
161101
(
2015
).

Supplementary Material

You do not currently have access to this content.