Intensive studies are published for graphene-based molecular magnets due to their remarkable electric, thermal, and mechanical properties. However, to date, most of all produced molecular magnets are ligand based and subject to challenges regarding the stability of the ligand(s). The lack of long-range coupling limits high operating temperature and leads to a short-range magnetic order. Herein, we introduce an aminoferrocene-based graphene system with room temperature superparamagnetic behavior in the long-range magnetic order that exhibits colossal magnetocrystalline anisotropy of 8 × 105 and 3 × 107 J/m3 in aminoferrocene and graphene-based aminoferrocene, respectively. These values are comparable to and even two orders of magnitude larger than pure iron metal. Aminoferrocene [C10H11FeN]+ is synthesized by an electrophilic substitution reaction. It was then reacted with graphene oxide that was prepared by the modified Hammers method. The phase structure and functionalization of surface groups were characterized and confirmed by XRD, FT-IR, and Raman spectroscopy. To model the behavior of the aminoferrocene between two sheets of hydroxylated graphene, we have used density functional theory by placing the aminoferrocene molecule between two highly ordered hydroxylated sheets and allowing the structure to relax. The strong bowing of the isolated graphene sheets suggests that the charge transfer and resulting magnetization could be strongly influenced by pressure effects. In contrast to strategies based on ligands surface attachment, our present work that uses interlayer intercalated aminoferrocene opens routes for future molecular magnets as well as the design of qubit arrays and quantum systems.

1.
E.
Coronado
, “
Molecular magnetism: From chemical design to spin control in molecules, materials and devices
,”
Nat. Rev. Mater.
5
,
87
104
(
2019
).
2.
D.
Luneau
, “
Molecular magnets
,”
Curr. Opin. Solid State Mater. Sci.
5
,
123
129
(
2001
).
3.
O.
Kahn
, “
Dinuclear complexes with predictable magnetic properties
,”
Angew. Chem.
24
,
834
850
(
1985
).
4.
J. M.
Manriquez
,
G. T.
Yee
,
R. S.
McLean
,
A. J.
Epstein
, and
J. S.
Miller
, “
A room-temperature molecular/organic-based magnet
,”
Science
252
,
1415
1417
(
1991
).
5.
C. S.
Olson
,
S.
Gangopadhyay
,
K.
Hoang
,
F.
Alema
,
S.
Kilina
, and
K.
Pokhodnya
, “
Magnetic exchange in Mn II [TCNE] (TCNE = tetracyanoethylene) molecule-based magnets with two- and three-dimensional magnetic networks
,”
J. Phys. Chem. C
119
(
44
),
25036
25046
(
2015
).
6.
F.-S.
Guo
,
M.
He
,
G.-Z.
Huang
,
S. R.
Giblin
,
D.
Billington
,
F. W.
Heinemann
,
M.-L.
Tong
,
A.
Mansikkamäki
, and
R. A.
Layfield
, “
Discovery of a dysprosium metallocene single-molecule magnet with two high-temperature Orbach processes
,”
Inorg. Chem.
61
,
6017
6025
(
2022
).
7.
S.
Iijima
, “
Helical microtubules of graphitic carbon
,”
Nature
354
,
56
58
(
1991
).
8.
S. J.
Blundell
and
F. L.
Pratt
, “
Organic and molecular magnets
,”
J. Phys.: Condens. Matter
16
,
R771
R828
(
2004
).
9.
J.
Hong
,
E.
Bekyarova
,
W. A.
de Heer
,
R. C.
Haddon
, and
S.
Khizroev
, “
Chemically engineered graphene-based 2D organic molecular magnet
,”
ACS Nano
7
,
10011
10022
(
2013
).
10.
M.
Sakurai
,
P.
Koley
, and
M.
Aono
, “
Tunable magnetism of organometallic nanoclusters by graphene oxide on-surface chemistry
,”
Sci. Rep.
9
,
14509
(
2019
).
11.
W.
Wernsdorfer
,
N.
Aliaga-Alcalde
,
D. N.
Hendrickson
, and
G.
Christou
, “
Exchange-biased quantum tunneling in a supramolecular dimer of single-molecule magnets
,”
Nature
416
,
406
409
(
2002
).
12.
A.
Diamantopoulou
,
S.
Glenis
,
G.
Zolnierkiwicz
,
N.
Guskos
, and
V.
Likodimos
, “
Magnetism in pristine and chemically reduced graphene oxide
,”
J. Appl. Phys.
121
,
043906
(
2017
).
13.
S. K.
Sarkar
,
K. K.
Raul
,
S. S.
Pradhan
,
S.
Basu
, and
A.
Nayak
, “
Magnetic properties of graphite oxide and reduced graphene oxide
,”
Physica E
64
,
78
82
(
2014
).
14.
D.
Galpaya
,
M.
Wang
,
G.
George
,
N.
Motta
,
E.
Waclawik
, and
C.
Yan
, “
Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties
,”
J. Appl. Phys.
116
,
053518
(
2014
).
15.
D.
Lee
,
J.
Seo
,
X.
Zhu
,
J. M.
Cole
, and
H.
Su
, “
Magnetism in graphene oxide induced by epoxy groups
,”
Appl. Phys. Lett.
106
,
172402
(
2015
).
16.
M.
Wang
and
C. M.
Li
, “
Magnetism in graphene oxide
,”
New J. Phys.
12
,
083040
(
2010
).
17.
Y.
Liu
,
N.
Tang
,
X.
Wan
,
Q.
Feng
,
M.
Li
,
Q.
Xu
,
F.
Liu
, and
Y.
Du
, “
Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen
,”
Sci. Rep.
3
,
2566
(
2013
).
18.
Y.
Liu
,
Q.
Feng
,
N.
Tang
,
X.
Wan
,
F.
Liu
,
L.
Lv
, and
Y.
Du
, “
Increased magnetization of reduced graphene oxide by nitrogen-doping
,”
Carbon
60
,
549
551
(
2013
).
19.
X.
Zhu
,
A.
Hale
,
G.
Christou
, and
A. F.
Hebard
, “
Electronegative ligands enhance charge transfer to Mn12 single-molecule magnets deposited on graphene
,”
J. Appl. Phys.
127
,
064303
(
2020
).
20.
L.
Guan
,
Z.
Shi
,
M.
Li
, and
Z.
Gu
, “
Ferrocene-filled single-walled carbon nanotubes
,”
Carbon
43
,
2780
2785
(
2005
).
21.
M.
Lopes
,
A.
Candini
,
M.
Urdampilleta
,
A.
Reserbat-Plantey
,
V.
Bellini
,
S.
Klyatskaya
,
L.
Marty
,
M.
Ruben
,
M.
Affronte
,
W.
Wernsdorfer
, and
N.
Bendiab
, “
Surface-enhanced Raman signal for terbium single-molecule magnets grafted on graphene
,”
ACS Nano
4
,
7531
7537
(
2010
).
22.
N. I.
Zaaba
,
K. L.
Foo
,
U.
Hashim
,
S. J.
Tan
,
W.-W.
Liu
, and
C. H.
Voon
, “
Synthesis of graphene oxide using modified hummers method: Solvent influence
,”
Procedia Eng.
184
,
469
477
(
2017
).
23.
M. D.
Rausch
, “
Metallocene chemistry—A decade of progress
,”
Can. J. Chem.
41
,
1289
1314
(
1963
).
24.
R. B.
Woodward
,
M.
Rosenblum
, and
M. C.
Whiting
, “
A new aromatic system
,”
J. Am. Chem. Soc.
74
,
3458
3459
(
1952
).
25.
G. A.
Olah
,
T.
Yamato
,
T.
Hashimoto
,
J. G.
Shih
,
N.
Trivedi
,
B. P.
Singh
,
M.
Piteau
, and
J. A.
Olah
, “
Aromatic substitution. 53. Electrophilic nitration, halogenation, acylation, and alkylation of (.alpha.,.alpha.,.alpha.-trifluoromethoxy)benzene
,”
J. Am. Chem. Soc.
109
,
3708
3713
(
1987
).
26.
D. V.
Porezag
and
M. R.
Pederson
, “
Optimization of Gaussian-basis sets for density functional calculations
,”
Phys. Rev. A
60
,
2840
2847
(
1999
).
27.
M. R.
Pederson
and
K. A.
Jackson
, “
Variational mesh for quantum-mechanical simulations
,”
Phys. Rev. B
41
,
7453
7461
(
1990
).
28.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
6687
(
1992
).
29.
D.
Porezag
and
M. R.
Pederson
, “
Infrared intensities and Raman-scattering activities within density-functional theory
,”
Phys. Rev. B
54
,
7830
7836
(
1996
).
30.
M. R.
Pederson
and
S. N.
Khanna
, “
Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules
,”
Phys. Rev. B
60
,
9566
9572
(
1999
).
31.
Z.
Hooshmand
,
J.-X.
Yu
,
H.-P.
Cheng
, and
M. R.
Pederson
, “
Electronic control of strong magnetic anisotropy in Co-based single-molecule magnets
,”
Phys. Rev. B
104
,
134411
(
2021
).
32.
M. R.
Pederson
,
D. V.
Porezag
,
J.
Kortus
, and
D.
Patton
, “
Strategies for massively parallel local-orbital-based electronic structure calculations
,”
Phys. Status Solidi B
217
,
197
218
(
2000
).
33.
B.
Paulchamy
,
G.
Arthi
, and
L.
Bd
, “
A simple approach to stepwise synthesis of graphene oxide nanomaterial
,”
J. Nanomed. Nanotechnol.
06
,
1000253
(
2015
).
34.
Q.
Su
,
S.
Pang
,
V.
Alijani
,
C.
Li
,
X.
Feng
, and
K.
Müllen
, “
Composites of graphene with large aromatic molecules
,”
Adv. Mater.
21
,
3191
3195
(
2009
).
35.
T. N.
Blanton
and
D.
Majumdar
, “
X-ray diffraction characterization of polymer intercalated graphite oxide
,”
Powder Diffr.
27
,
104
107
(
2012
).
36.
M. B.
Avinash
,
K. S.
Subrahmanyam
,
Y.
Sundarayya
, and
T.
Govindaraju
, “
Covalent modification and exfoliation of graphene oxide using ferrocene
,”
Nanoscale
2
,
1762
1766
(
2010
).
37.
J.
Gao
,
F.
Liu
,
Y.
Liu
,
N.
Ma
,
Z.
Wang
, and
X.
Zhang
, “
Environment-friendly method to produce graphene that employs vitamin C and amino acid
,”
Chem. Mater.
22
,
2213
2218
(
2010
).
38.
K. N.
Kudin
,
B.
Ozbas
,
H. C.
Schniepp
,
R. K.
Prud'homme
,
I. A.
Aksay
, and
R.
Car
, “
Raman spectra of graphite oxide and functionalized graphene sheets
,”
Nano Lett.
8
,
36
41
(
2008
).
39.
A.
Kaniyoor
and
S.
Ramaprabhu
, “
A Raman spectroscopic investigation of graphite oxide derived graphene
,”
AIP Adv.
2
,
032183
(
2012
).
40.
Y.
Yamada
,
H.
Yasuda
,
K.
Murota
,
M.
Nakamura
,
T.
Sodesawa
, and
S.
Sato
, “
Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy
,”
J. Mater. Sci.
48
,
8171
8198
(
2013
).
41.
E. R.
Lippincott
and
R. D.
Nelson
, “
The vibrational spectra and structure of ferrocene and ruthenocene
,”
Spectrochim. Acta
10
,
307
329
(
1957
).
42.
V.
Kumar
,
A.
Kumar
,
D.-J.
Lee
, and
S.-S.
Park
, “
Estimation of number of graphene layers using different methods: A focused review
,”
Materials
14
,
4590
(
2021
).
43.
A. A.
El-Gendy
,
E. M. M.
Ibrahim
,
V. O.
Khavrus
,
Y.
Krupskaya
,
S.
Hampel
,
A.
Leonhardt
,
B.
Büchner
, and
R.
Klingeler
, “
The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties
,”
Carbon
47
,
2821
2828
(
2009
).
44.
A. A.
El-Gendy
,
M.
Bertino
,
D.
Clifford
,
M.
Qian
,
S. N.
Khanna
, and
E. E.
Carpenter
, “
Experimental evidence for the formation of CoFe2C phase with colossal magnetocrystalline-anisotropy
,”
Appl. Phys. Lett.
106
,
213109
(
2015
).
45.
R. V.
Viesser
,
L. C.
Ducati
,
C. F.
Tormena
, and
J.
Autschbach
, “
The unexpected roles of σ and π orbitals in electron donor and acceptor group effects on the 13C NMR chemical shifts in substituted benzenes
,”
Chem. Sci.
8
,
6570
6576
(
2017
).
46.
T.
Enoki
,
M.
Enomoto
,
M.
Enomoto
,
K.
Yamaguchi
,
N.
Yoneyama
,
J.
Yamaura
,
A.
Miyazaki
, and
G.
Saito
, “
Molecular magnets based on charge transfer complexes
,”
Mol. Cyst. Liq. Cyst.
285
,
19
26
(
1996
).
47.
W.
Wang
,
L.-Q.
Yan
,
J.-Z.
Cong
,
Y.-L.
Zhao
,
F.
Wang
,
S.-P.
Shen
,
T.
Zou
,
D.
Zhang
,
S.-G.
Wang
,
X.-F.
Han
, and
Y.
Sun
, “
Magnetoelectric coupling in the paramagnetic state of a metal-organic framework
,”
Sci. Rep.
3
,
2024
(
2013
).

Supplementary Material

You do not currently have access to this content.