In this paper, a differential quartz-enhanced photoacoustic spectroscopy (D-QEPAS) sensor is reported. The differential photoacoustic cell (PAC) was used to generate the photoacoustic effect. Two quartz tuning forks (QTFs) with a quality factor (Q) up to 10 000 were used as the acoustic wave transducers. The signal of D-QEPAS sensor was doubly enhanced by the differential characteristic of differential PAC and resonant response of QTF. The background noise was suppressed based on the differential principle. With the help of the finite element method, the acoustic field characteristics were simulated and calculated. Wavelength modulation spectroscopy technique and second harmonic (2f) detection technique were applied to detect photoacoustic signal. Trace acetylene (C2H2) gas detection was performed to verify the D-QEPAS sensor performance. The 2f signal amplitude of differential mode was 116.03 μV, which had a 1.65 times improvement compared with the 2f signal amplitudes of QTF1. When the integration time was 334 s, the minimum detection limit of D-QEPAS sensor was about 496.7 ppb. The reported D-QEPAS provides a development and idea for the widely reported QEPAS technique.

1.
H. I.
Schiff
,
G. I.
Mackay
, and
J.
Bechara
, “
The use of tunable diode laser absorption spectroscopy for atmospheric measurements
,”
Res. Chem. Intermed.
20
,
525
556
(
1994
).
2.
H. Y.
Lin
,
H. D.
Zheng
,
B. Y. A. Z.
Montano
,
H. P.
Wu
,
M.
Giglio
,
A.
Sampaolo
,
P.
Patimisco
,
W. G.
Zhu
,
Y. C.
Zhong
,
L.
Dong
,
R. F.
Kan
,
J. H.
Yu
, and
V.
Spagnolo
, “
Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28 kHz tuning fork
,”
Photoacoustics
25
,
100321
(
2022
).
3.
X. N.
Liu
and
Y. F.
Ma
, “
Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell
,”
Chin. Opt. Lett.
20
(
3
),
031201
(
2022
).
4.
Y. F.
Ma
,
T. T.
Liang
,
S. D.
Qiao
,
X. N.
Liu
, and
Z. T.
Lang
, “
Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy
,”
Ultrafast Sci.
3
,
0024
(
2023
).
5.
Y. H.
Liu
and
Y. F.
Ma
, “
Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology
,”
Chin. Opt. Lett.
21
,
033001
(
2023
).
6.
R.
Dubroeucq
and
L.
Rutkowski
, “
Optical frequency comb Fourier transform cavity ring-down spectroscopy
,”
Opt. Express
30
,
13594
13602
(
2022
).
7.
X. N.
Liu
and
Y. F.
Ma
, “
Tunable diode laser absorption spectroscopy based temperature measurement with a single diode laser near 1.4 μm
,”
Sensors
22
,
6095
(
2022
).
8.
M. A.
Bolshov
,
Y. A.
Kuritsyn
,
V. V.
Liger
,
V. R.
Mironenko
,
S. B.
Leonov
, and
D. A.
Yarantsev
, “
Measurements of the temperature and water vapor concentration in a hot zone by tunable diode laser absorption spectrometry
,”
Appl. Phys. B
100
,
397
407
(
2010
).
9.
B.
Zhang
,
K.
Chen
,
Y. W.
Chen
,
B. L.
Yang
,
M.
Guo
,
H.
Deng
,
F. X.
Ma
,
F.
Zhu
,
Z. F.
Gong
,
W.
Peng
, and
Q. X.
Yu
, “
High-sensitivity photoacoustic gas detector by employing multi-pass cell and fiber-optic microphone
,”
Opt. Express
28
,
6618
6630
(
2020
).
10.
Y. F.
Ma
,
S. D.
Qiao
,
P.
Patimisco
,
A.
Sampaolo
,
Y.
Wang
,
F. K.
Tittel
, and
V.
Spagnolo
, “
In-plane quartz-enhanced photoacoustic spectroscopy
,”
Appl. Phys. Lett.
116
,
061101
(
2020
).
11.
L. J.
Fu
,
P.
Lu
,
C. T.
Sima
,
J. B.
Zhao
,
Y. F.
Pan
,
T. L.
Li
,
X. H.
Zhang
, and
D. M.
Liu
, “
Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones
,”
Photoacoustics
27
,
100382
(
2022
).
12.
Z. J.
Shang
,
S. Z.
Li
,
B.
Li
,
H. P.
Wu
,
A.
Sampaolo
,
P.
Patimisco
,
V.
Spagnolo
, and
L.
Dong
, “
Quartz-enhanced photoacoustic NH3 sensor exploiting a large-prong-spacing quartz tuning fork and an optical fiber amplifier for biomedical applications
,”
Photoacoustics
26
,
100363
(
2022
).
13.
K.
Chen
,
B.
Zhang
,
S.
Liu
, and
Q. X.
Yu
, “
Parts-per-billion-level detection of hydrogen sulfide based on near-infrared all-optical photoacoustic spectroscopy
,”
Sens. Actuators, B
283
,
1
5
(
2019
).
14.
A.
Zifarelli
,
R.
De Palo
,
P.
Patimisco
,
M.
Giglio
,
A.
Sampaolo
,
S.
Blaser
,
J.
Butet
,
O.
Landry
,
A.
Müller
, and
V.
Spagnolo
, “
Multi-gas quartz-enhanced photoacoustic sensor for environmental monitoring exploiting a Vernier effect-based quantum cascade laser
,”
Photoacoustics
28
,
100401
(
2022
).
15.
Y. F.
Ma
,
R.
Lewicki
,
M.
Razeghi
, and
F. K.
Tittel
, “
QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL
,”
Opt. Express
21
,
1008
1019
(
2013
).
16.
K.
Chen
,
H.
Deng
,
M.
Guo
,
C.
Luo
,
S.
Liu
,
B.
Zhang
,
F. X.
Ma
,
F.
Zhu
,
Z. F.
Gong
,
W.
Peng
, and
Q. X.
Yu
, “
Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer
,”
Opt. Laser Technol.
123
,
105894
(
2020
).
17.
C.
Zhang
,
S. D.
Qiao
, and
Y. F.
Ma
, “
Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity
,”
Photoacoustics
30
,
100467
(
2023
).
18.
Y.
Cao
,
R. F.
Wang
,
J.
Peng
,
K.
Liu
,
W. D.
Chen
,
G. S.
Wang
, and
X. M.
Gao
, “
Humidity enhanced N2O photoacoustic sensor with a 4.53 μm quantum cascade laser and Kalman filter
,”
Photoacoustics
24
,
100303
(
2021
).
19.
S. D.
Qiao
,
P. Z.
Ma
,
V.
Tsepelin
,
G. W.
Han
,
J. X.
Liang
,
W.
Ren
,
H. D.
Zheng
, and
Y. F.
Ma
, “
Super tiny quartz-tuning-fork-based light-induced thermoelastic spectroscopy sensing
,”
Opt. Lett.
48
,
419
422
(
2023
).
20.
T. T.
Wei
,
A.
Zifarelli
,
S.
Dello Russo
,
H. P.
Wu
,
G.
Menduni
,
P.
Patimisco
,
A.
Sampaolo
,
V.
Spagnolo
, and
L.
Dong
, “
High and flat spectral responsivity of quartz tuning fork used as infrared photodetector in tunable diode laser spectroscopy
,”
Appl. Phys. Rev.
8
,
041409
(
2021
).
21.
S. D.
Russo
,
A.
Zifarelli
,
P.
Patimisco
,
A.
Sampaolo
,
T. T.
Wei
,
H. P.
Wu
,
L.
Dong
, and
V.
Spagnolo
, “
Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy
,”
Opt. Express
28
,
19074
19084
(
2020
).
22.
Y.
Ma
,
Y.
He
,
Y.
Tong
,
X.
Yu
, and
F. K.
Tittel
, “
Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection
,”
Opt. Express
26
,
32103
32110
(
2018
).
23.
X. N.
Liu
,
S. D.
Qiao
,
G. W.
Han
,
J. X.
Liang
, and
Y. F.
Ma
, “
Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting
,”
Photoacoustics
28
,
100422
(
2022
).
24.
Z. T.
Lang
,
S. D.
Qiao
,
Y.
He
, and
Y. F.
Ma
, “
Quartz tuning fork-based demodulation of an acoustic signal induced by photo-thermo-elastic energy conversion
,”
Photoacoustics
22
,
100272
(
2021
).
25.
A. A.
Kosterev
,
Y. A.
Bakhirkin
,
R. F.
Curl
, and
F. K.
Tittel
, “
Quartz-enhanced photoacoustic spectroscopy
,”
Opt. Lett.
27
,
1902
1904
(
2002
).
26.
Y. X.
Zhang
,
Y.
Xie
,
J. C.
Lu
,
J. S.
Zhao
,
Y. H.
Wu
,
J. L.
Tong
, and
J.
Shao
, “
Continuous real-time monitoring of carbon dioxide emitted from human skin by quartz-enhanced photoacoustic spectroscopy
,”
Photoacoustics
30
,
100488
(
2023
).
27.
K.
Liu
,
X. Y.
Guo
,
H. M.
Yi
,
W. D.
Chen
,
W. J.
Zhang
, and
X. M.
Gao
, “
Off-beam quartz-enhanced photoacoustic spectroscopy
,”
Opt. Lett.
34
,
1594
1596
(
2009
).
28.
H. M.
Yi
,
W. D.
Chen
,
S. W.
Sun
,
K.
Liu
,
T.
Tan
, and
X. M.
Gao
, “
T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor
,”
Opt. Express
20
,
9187
9196
(
2012
).
29.
R.
Rousseau
,
D.
Ayache
,
N.
Maurin
,
W.
Trzpil
,
M.
Bahriz
, and
A.
Vicet
, “
Monolithic double resonator for quartz enhanced photoacoustic spectroscopy
,”
Appl. Sci.
11
,
2094
(
2021
).
30.
Y. F.
Ma
,
Y. H.
Hong
,
S. D.
Qiao
,
Z. T.
Lang
, and
X. N.
Liu
, “
H-shaped acoustic micro-resonator-based quartz-enhanced photoacoustic spectroscopy
,”
Opt. Lett.
47
,
601
604
(
2022
).
31.
Z.
Wang
,
Q.
Wang
,
H.
Zhang
,
S.
Borri
,
I.
Galli
,
A.
Sampaolo
,
P.
Patimisco
,
V. L.
Spagnolo
,
P.
De Natale
, and
W.
Ren
, “
Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range
,”
Photoacoustics
27
,
100387
(
2022
).
32.
G.
Menduni
,
A.
Zifarelli
,
A.
Sampaolo
,
P.
Patimisco
,
M.
Giglio
,
N.
Amoroso
,
H. P.
Wu
,
L.
Dong
,
R.
Bellotti
, and
V.
Spagnolo
, “
High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition
,”
Photoacoustics
26
,
100349
(
2022
).
You do not currently have access to this content.