Growing a thick high-quality epitaxial layer on the β-Ga2O3 substrate is crucial in commercializing β-Ga2O3 devices. Metal organic chemical vapor deposition (MOCVD) is also well-established for the large-scale commercial growth of β-Ga2O3 and related heterostructures. This paper presents a systematic study of the Schottky barrier diodes fabricated on two different Si-doped homoepitaxial β-Ga2O3 thin films grown on Sn-doped (001) and (010) β-Ga2O3 substrates by MOCVD. X-ray diffraction analysis of the MOCVD-grown sample, room temperature current density–voltage data for different Schottky diodes, and C–V measurements are presented. Diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage, are studied. Temperature dependence (170–360 K) of the ideality factor, barrier height, and Poole–Frenkel reverse leakage mechanism are also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.

1.
M.
Higashiwaki
and
G. H.
Jessen
, “
Guest Editorial: The dawn of gallium oxide microelectronics
,”
Appl. Phys. Lett.
112
,
060401
(
2018
).
2.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Development of gallium oxide power devices
,”
Phys. Status Solidi A
211
,
21
26
(
2014
).
3.
H.
Murakami
,
K.
Nomura
,
K.
Goto
,
K.
Sasaki
,
K.
Kawara
,
Q. T.
Thieu
,
R.
Togashi
,
Y.
Kumagai
,
M.
Higashiwaki
,
A.
Kuramata
,
S.
Yamakoshi
,
B.
Monemar
, and
A.
Koukitu
, “
Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy
,”
Appl. Phys. Express
8
,
015503
(
2015
).
4.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Villora
,
K.
Shimamura
, and
S.
Yamakoshi
, “
Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy
,”
Appl. Phys. Express
5
,
035502
(
2012
).
5.
S.
Rafique
,
L.
Han
,
M. J.
Tadjer
,
J. A.
Freitas
, Jr.
,
N. A.
Mahadik
, and
H.
Zhao
, “
Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition
,”
Appl. Phys. Lett.
108
,
182105
(
2016
).
6.
D. H.
Mudiyanselage
,
D.
Wang
, and
H.
Fu
, “
Ultrawide bandgap vertical β-(AlxGa1−x)2O3 Schottky barrier diodes on free-standing β-Ga2O3 substrates
,”
J. Vac. Sci. Technol. A
41
,
023201
(
2023
).
7.
G.
Wagner
,
M.
Baldini
,
D.
Gogova
,
M.
Schmidbauer
,
R.
Schewski
,
M.
Albrecht
,
Z.
Galazka
,
D.
Klimm
, and
R.
Fornari
, “
Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy
,”
Phys. Status Solidi A
211
,
27
33
(
2014
).
8.
S.
Dhara
,
N. K.
Kalarickal
,
A.
Dheenan
,
C.
Joishi
, and
S.
Rajan
, “
β-Ga2O3 Schottky barrier diodes with 4.1 MV/cm field strength by deep plasma etching field-termination
,”
Appl. Phys. Lett.
121
,
203501
(
2022
).
9.
P. P.
Sundaram
,
F.
Alema
,
A.
Osinsky
, and
S. J.
Koester
, “
β-(AlxGa1−x)2O3/Ga2O3 heterostructure Schottky diodes for improved VBR2/RON
,”
J. Vac. Sci. Technol. A
40
,
043211
(
2022
).
10.
N. K.
Kalarickal
,
Z.
Xia
,
J.
McGlone
,
S.
Krishnamoorthy
,
W.
Moore
,
M.
Brenner
,
A. R.
Arehart
,
S. A.
Ringel
, and
S.
Rajan
, “
Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3
,”
Appl. Phys. Lett.
115
,
152106
(
2019
).
11.
J. H.
Leach
,
K.
Udwary
,
J.
Rumsey
,
G.
Dodson
,
H.
Splawn
, and
K. R.
Evans
, “
Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films
,”
APL Mater.
7
,
022504
(
2019
).
12.
P.
Mazzolini
,
A.
Falkenstein
,
C.
Wouters
,
R.
Schewski
,
T.
Markurt
,
Z.
Galazka
,
M.
Martin
,
M.
Albrecht
, and
O.
Bierwagen
, “
Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (-201) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE)
,”
APL Mater.
8
,
011107
(
2020
).
13.
Y.
Zhang
,
F.
Alema
,
A.
Mauze
,
O. S.
Koksaldi
,
R.
Miller
,
A.
Osinsky
, and
J. S.
Speck
, “
MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/Vs at room temperature
,”
APL Mater.
7
,
022506
(
2019
).
14.
A. F. M. U.
Bhuiyan
,
L.
Meng
,
H.
Huang
,
J.
Sarker
,
C.
Chae
,
B.
Mazumder
,
J.
Hwang
, and
H.
Zhao
, “
Metalorganic chemical vapor deposition of β-(AlxGa1−x)2O3 thin films on (001) β-Ga2O3 substrates
,”
APL Mater.
11
,
041112
(
2023
).
15.
M. J.
Tadjer
,
M. A.
Mastro
,
N. A.
Mahadik
,
M.
Currie
,
V. D.
Wheeler
,
J. A.
Freitas
,
J. D.
Greenlee
,
J. K.
Hite
,
K. D.
Hobart
,
C. R.
Eddy
, and
F. J.
Kub
, “
Structural, optical, and electrical characterization of monoclinic β-Ga2O3 grown by MOVPE on sapphire substrates
,”
J. Electron. Mater.
45
,
2031
2037
(
2016
).
16.
R.
Miller
,
F.
Alema
, and
A.
Osinsky
, “
Epitaxial β-Ga2O3 and β-(AlxGa1−x)2O3/β-Ga2O3 heterostructures growth for power electronics
,”
IEEE Trans. Semicond. Manuf.
31
(
4
),
467
474
(
2018
).
17.
F.
Alema
,
B.
Hertog
,
A.
Osinsky
,
P.
Mukhopadhyay
,
M.
Toporkov
, and
W. V.
Schoenfeld
, “
Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD
,”
J. Cryst. Growth
475
,
77
82
(
2017
).
18.
M.
Higashiwaki
and
S.
Fujita
, “
Gallium oxide gallium oxide: Materials properties, crystal growth, and devices
,”
Springer Series in Materials Science
(
Springer International Publishing
,
Cham, Switzerland
,
2020
), Vol.
293
.
19.
V. M.
Bermudez
, “
The structure of low-index surfaces of β-Ga2O3
,”
Chem. Phys.
323
,
193
203
(
2006
).
20.
C.
Zhao
,
T.
Jiao
,
W.
Chen
,
Z.
Li
,
X.
Dong
,
Z.
Li
,
Z.
Diao
,
Y.
Zhang
,
B.
Zhang
, and
G.
Du
, “
Preparation of high-thickness n-Ga2O3 film by MOCVD
,”
Coatings
12
,
645
(
2022
).
21.
S.
Saha
,
L.
Meng
,
Z.
Feng
,
A. F. M. A. U.
Bhuiyan
,
H.
Zhao
, and
U.
Singisetti
, “
Schottky diode characteristics on high-growth rate LPCVD β-Ga2O3 films on (010) and (001) Ga2O3 substrates
,”
Appl. Phys. Lett.
120
,
122106
(
2022
).
22.
M. J.
Tadjer
,
F.
Alema
,
A.
Osinsky
et al, “
High growth-rate MOCVD homoepitaxial β-Ga2O3 films and MOSFETs for power electronics applications
,”
Proc. SPIE
11687
,
116870S
(
2021
).
23.
F.
Alema
,
Y.
Zhang
,
A.
Osinsky
,
N.
Orishchin
,
N.
Valente
,
A.
Mauze
, and
J. S.
Speck
, “
Low 1014 cm−3 free carrier concentration in epitaxial β-Ga2O3 grown by MOCVD
,”
APL Mater.
8
,
021110
(
2020
).
24.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
,
3rd ed.
(
Wiley
,
2007
).
25.
E. H.
Rhoderick
, “
Metal-semiconductor contacts
,”
IEE Proc., Part I
129
(
1
), 1–14 (
1982
).
26.
M.
Higashiwaki
,
K.
Sasaki
,
K.
Goto
,
K.
Nomura
,
Q. T.
Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
,
B.
onemar
,
A.
Koukitu
,
A.
Kuramata
, and
S.
Yamakoshi
, “
Ga2O3 Schottky barrier diodes with n−-Ga2O3 drift layers grown by HVPE
,” in
73rd Annual Device Research Conference (DRC)
(IEEE,
2015
), pp.
29
30
.
27.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
, “
2300V reverse breakdown voltage Ga2O3 Schottky rectifiers
,”
ECS J. Solid State Sci. Technol.
7
,
Q92
Q96
(
2018
).
28.
Q.
He
,
W.
Hao
,
X.
Zhou
et al, “
Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination
,”
IEEE Electron Device Lett.
43
,
264
267
(
2022
).
29.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
, “
Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW.cm−2 figure-of-merit
,”
AIP Adv.
8
,
055026
(
2018
).
30.
J.
Yang
,
S.
Ahn
,
F.
Ren
,
S. J.
Pearton
,
S.
Jang
,
J.
Kim
, and
A.
Kuramata
, “
High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3
,”
Appl. Phys. Lett.
110
,
192101
(
2017
).
31.
T.
Yang
,
H. Q.
Fu
,
H.
Chen
,
X. Q.
Huang
,
J.
Montes
,
I.
Baranowski
,
K.
Fu
, and
Y. J.
Zhao
, “
Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates
,”
J. Semicond.
40
(
1
),
012801
(
2019
).
32.
S.
Dogan
,
S.
Duman
,
B.
Gurbulak
,
S.
Tuzemen
, and
H.
Morkoc
, “
Temperature variation of current–voltage characteristics of Au/Ni/n-GaN Schottky diodes
,”
Physica E
41
,
646
651
(
2009
).
33.
N.
Yildirim
and
A.
Turut
, “
A theoretical analysis together with experimental data of inhomogeneous Schottky barrier diodes
,”
Microelectron. Eng.
86
(
11
),
2270
2274
(
2009
).
34.
R. T.
Tung
, “
The physics and chemistry of the Schottky barrier height
,”
Appl. Phys. Rev.
1
,
011304
(
2014
).
35.
R. T.
Tung
, “
Electron transport at metal-semiconductor interfaces: General theory
,”
Phys. Rev. B
45
,
13509
13523
(
1992
).
36.
W.
Monch
, “
Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities
,”
J. Vac. Sci. Technol. B
17
,
1867
1876
(
1999
).
37.
S.
Chand
and
J.
Kumar
, “
Effects of barrier height distribution on the behavior of a Schottky diode
,”
J. Appl. Phys.
82
,
5005
5010
(
1997
).
38.
H.
Sheoran
,
B. R.
Tak
,
N.
Manikanthababu
, and
R.
Singh
, “
Temperature-dependent electrical characteristics of Ni/Au vertical Schottky barrier diodes on β-Ga2O3 epilayers
,”
ECS J. Solid State Sci. Technol.
9
,
055004
(
2020
).
39.
J. H.
Werner
and
H. H.
Guttler
, “
Barrier inhomogeneities at Schottky contacts
,”
J. Appl. Phys.
69
,
1522
1533
(
1991
).
40.
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
, “
MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties
,”
Appl. Phys. Lett.
114
,
250601
(
2019
).
41.
J. G.
Simmons
, “
Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems
,”
Phys. Rev.
155
,
657
660
(
1967
).
42.
L.
Zhou
,
X.
Lu
,
L.
Chen
,
X.
Ouyang
,
B.
Liu
,
J.
Xu
, and
H.
Tang
, “
Leakage current by Poole–Frenkel emission in Pt Schottky contacts on (-201) β-Ga2O3 grown by edge-defined film-fed growth
,”
ECS J. Solid State Sci. Technol.
8
,
Q3054
(
2019
).
43.
H.
Zhang
,
E. J.
Miller
, and
E. T.
Yu
, “
Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N∕GaN grown by molecular-beam epitaxy
,”
J. Appl. Phys.
99
,
023703
(
2006
).
44.
J. R.
Yeargan
and
H. L.
Taylor
, “
The Poole-Frenkel effect with compensation present
,”
J. Appl. Phys.
39
,
5600
5604
(
1968
).
45.
K. B.
Jinesh
,
J. L.
van Hemmen
,
M. C. M.
van de Sanden
,
F.
Roozeboom
,
J. H.
Klootwijk
,
W. F. A.
Besling
, and
W. M. M.
Kessels
, “
Dielectric properties of thermal and plasma-assisted atomic layer deposited Al2O3 thin films
,”
J. Electrochem. Soc.
158
,
G21
G26
(
2011
).
46.
J. L.
Hartke
, “
The three-dimensional Poole–Frenkel Effect
,”
J. Appl. Phys.
39
,
4871
4873
(
1968
).
47.
B.
Liu
,
M.
Gu
, and
X.
Liu
, “
Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles
,”
Appl. Phys. Lett.
91
,
172102
(
2007
).
48.
H.
Ghadi
,
J. F.
McGlone
,
C. M.
Jackson
,
E.
Farzana
,
Z.
Feng
,
A. F. M. A. U.
Bhuiyan
,
H.
Zhao
,
A. R.
Arehart
, and
S. A.
Ringel
, “
Full bandgap defect state characterization of β-Ga2O3 grown by metal organic chemical vapor deposition
,”
APL Mater.
8
,
021111
(
2020
).

Supplementary Material

You do not currently have access to this content.