According to the Babinet principle, the diffraction pattern from an opaque body is identical to that from a hole of the same shape and size. Intuitively, placing two complementary structures such as an opaque metal body and its transparent counterpart one by one may result in destructive or constructive interference leading to unexpected electromagnetic response. We propose a Babinet principle-based metamaterial made of two complementary metal/hole checkerboards. The unit cell of each layer is either a metal square with 1/4 of 8 neighboring squares, four of which are made of metal, whereas the other four are square holes, or vice versa. Being placed complementary at optimal distance equal to three-unit cell length, the compound bi-layered Babinet structure demonstrates absolute transparency in a very broad frequency range. The observed absolute transparency of the bi-layered Babinet metasurface is the result of the modified multipole interaction of layers with shifted centers of radiation. We demonstrate both theoretically and experimentally absolute transmission of 0 dB for the Babinet metamaterial made of 3 cm sized Cu squares and complementary holes in the broad frequency range from 4.5 to 6.62 GHz in simulations and from 4.6 to 6.4 GHz in the experiment when the distance between two layers is 1.2 cm. Moving layers toward each other leads to blurring of the resonances. The proven concept of simple, reproducible, and scalable design of the Babinet metamaterial paves the way for the fabrication of broadband transparent devices at any frequency, including THz and optical ranges. The main advantage of broadband Babine metamaterials is applications in optical switching, sensing, filtering, and slow light devices.

1.
G.
Labate
,
A.
Alù
, and
L.
Matekovits
, “
Surface-admittance equivalence principle for nonradiating and cloaking problems
,”
Phys. Rev. A
95
,
063841
(
2017
).
2.
M. F.
Limonov
,
M. V.
Rybin
,
A. N.
Poddubny
, and
Y. S.
Kivshar
, “
Fano resonances in photonics
,”
Nat. Photonics
11
,
543
554
(
2017
).
3.
B.
Luk'yanchuk
,
N. I.
Zheludev
,
S. A.
Maier
,
N. J.
Halas
,
P.
Nordlander
,
H.
Giessen
, and
C. T.
Chong
, “
The Fano resonance in plasmonic nanostructures and metamaterials
,”
Nat. Mater.
9
,
707
715
(
2010
).
4.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
, “
Fano resonances in nanoscale structures
,”
Rev. Mod. Phys.
82
,
2257
(
2010
).
5.
S.
Zhang
,
D. A.
Genov
,
Y.
Wang
,
M.
Liu
, and
X.
Zhang
, “
Plasmon-induced transparency in metamaterials
,”
Phys. Rev. Lett.
101
,
047401
(
2008
).
6.
P.
Tassin
,
L.
Zhang
,
T.
Koschny
,
E.
Economou
, and
C. M.
Soukoulis
, “
Low-loss metamaterials based on classical electromagnetically induced transparency
,”
Phys. Rev. Lett.
102
,
053901
(
2009
).
7.
N.
Papasimakis
,
V. A.
Fedotov
,
N.
Zheludev
, and
S.
Prosvirnin
, “
Metamaterial analog of electromagnetically induced transparency
,”
Phys. Rev. Lett.
101
,
253903
(
2008
).
8.
R. M.
Saadabad
,
L.
Huang
,
A. B.
Evlyukhin
, and
A. E.
Miroshnichenko
, “
Multifaceted anapole: From physics to applications
,”
Opt. Mater. Express
12
,
1817
1837
(
2022
).
9.
K. V.
Baryshnikova
,
D. A.
Smirnova
,
B. S.
Luk'yanchuk
, and
Y. S.
Kivshar
, “
Optical anapoles: Concepts and applications
,”
Adv. Opt. Mater.
7
,
1801350
(
2019
).
10.
V. A.
Fedotov
,
A.
Rogacheva
,
V.
Savinov
,
D. P.
Tsai
, and
N. I.
Zheludev
, “
Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials
,”
Sci. Rep.
3
,
2967
(
2013
).
11.
A. E.
Miroshnichenko
,
A. B.
Evlyukhin
,
Y. F.
Yu
,
R. M.
Bakker
,
A.
Chipouline
,
A. I.
Kuznetsov
,
B.
Luk-yanchuk
,
B. N.
Chichkov
, and
Y. S.
Kivshar
, “
Nonradiating anapole modes in dielectric nanoparticles
,”
Nat. Commun.
6
,
8069
(
2015
).
12.
P.
Kapitanova
,
E.
Zanganeh
,
N.
Pavlov
,
M.
Song
,
P.
Belov
,
A.
Evlyukhin
, and
A.
Miroshnichenko
, “
Seeing the unseen: Experimental observation of magnetic anapole state inside a high-index dielectric particle
,”
Ann. Phys.
532
,
2000293
(
2020
).
13.
A. K.
Ospanova
,
A.
Basharin
,
A. E.
Miroshnichenko
, and
B.
Luk-yanchuk
, “
Generalized hybrid anapole modes in all-dielectric ellipsoid particles
,”
Opt. Mater. Express
11
,
23
34
(
2021
).
14.
B.
Luk'yanchuk
,
R.
Paniagua-Domínguez
,
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
, and
Y. S.
Kivshar
, “
Hybrid anapole modes of high-index dielectric nanoparticles
,”
Phys. Rev. A
95
,
063820
(
2017
).
15.
A.
Canós Valero
,
E. A.
Gurvitz
,
F. A.
Benimetskiy
,
D. A.
Pidgayko
,
A.
Samusev
,
A. B.
Evlyukhin
,
V.
Bobrovs
,
D.
Redka
,
M. I.
Tribelsky
,
M.
Rahmani
et al, “
Theory, observation, and ultrafast response of the hybrid anapole regime in light scattering
,”
Laser Photonics Rev.
15
,
2100114
(
2021
).
16.
J. D.
Jackson
, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 98.
17.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
Elsevier
,
2013
).
18.
A.
Ospanova
,
M.
Cojocari
, and
A.
Basharin
, “
Modified multipoles in photonics
,”
Phys. Rev. B
107
,
035156
(
2023
).
19.
V. R.
Tuz
,
V.
Dmitriev
, and
A. B.
Evlyukhin
, “
Antitoroidic and toroidic orders in all-dielectric metasurfaces for optical near-field manipulation
,”
ACS Appl. Nano Mater.
3
,
11315
11325
(
2020
).
20.
R. E.
Raab
and
O. L.
De Lange
,
Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications
(
OUP
,
Oxford
,
2004
), Vol.
128
.
21.
F.
Falcone
,
T.
Lopetegi
,
M.
Laso
,
J.
Baena
,
J.
Bonache
,
M.
Beruete
,
R.
Marqués
,
F.
Martín
, and
M.
Sorolla
, “
Babinet principle applied to the design of metasurfaces and metamaterials
,”
Phys. Rev. Lett.
93
,
197401
(
2004
).
22.
C.
Rockstuhl
,
T.
Zentgraf
,
T. P.
Meyrath
,
H.
Giessen
, and
F.
Lederer
, “
Resonances in complementary metamaterials and nanoapertures
,”
Opt. Express
16
,
2080
2090
(
2008
).
23.
L.
Zhang
,
T.
Koschny
, and
C. M.
Soukoulis
, “
Creating double negative index materials using the Babinet principle with one metasurface
,”
Phys. Rev. B
87
,
045101
(
2013
).
24.
X.
Ni
,
S.
Ishii
,
A. V.
Kildishev
, and
V. M.
Shalaev
, “
Ultra-thin, planar, Babinet-inverted plasmonic metalenses
,”
Light: Sci. Appl.
2
,
e72
(
2013
).
25.
Y.
Urade
,
Y.
Nakata
,
K.
Okimura
,
T.
Nakanishi
,
F.
Miyamaru
,
M. W.
Takeda
, and
M.
Kitano
, “
Dynamically Babinet-invertible metasurface: A capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition
,”
Opt. Express
24
,
4405
4410
(
2016
).
26.
E.
Tóth
,
B.
Bánhelyi
,
O.
Fekete
, and
M.
Csete
, “
Metamaterial properties of Babinet complementary complex structures
,”
Sci. Rep.
13
,
4701
(
2023
).
27.
A. A.
Basharin
,
E.
Zanganeh
,
A. K.
Ospanova
,
P.
Kapitanova
, and
A. B.
Evlyukhin
, “
Selective superinvisibility effect via compound anapole
,”
Phys. Rev. B
107
,
155104
(
2023
).
28.
A. K.
Ospanova
,
A.
Karabchevsky
, and
A. A.
Basharin
, “
Metamaterial engineered transparency due to the nullifying of multipole moments
,”
Opt. Lett.
43
,
503
506
(
2018
).
29.
K.
Kempa
, “
Percolation effects in the checkerboard Babinet series of metamaterial structures
,”
Phys. Status Solidi (RRL)
4
,
218
220
(
2010
).
30.
V.
Savinov
,
V. A.
Fedotov
, and
N. I.
Zheludev
, “
Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials
,”
Phys. Rev. B
89
,
205112
(
2014
).
31.
P. D.
Terekhov
,
V. E.
Babicheva
,
K. V.
Baryshnikova
,
A. S.
Shalin
,
A.
Karabchevsky
, and
A. B.
Evlyukhin
, “
Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect
,”
Phys. Rev. B
99
,
045424
(
2019
).
You do not currently have access to this content.