Achieving sound attenuation across a broad frequency range while maintaining adequate ventilation remains a significant challenge in acoustic engineering, as there exists a rigid trade-off between attenuation ability and ventilation. In this Letter, we propose a double-layered microperforated meta-shells to serve as broadband acoustic ventilation barrier. Multiple scattering theory is first employed to characterize sound attenuation performance of the proposed design in terms of both sound absorption and transmission loss, which is not reported before. Experimental result demonstrates a good enhancement of absorption due to the insertion of inner shell with a specific perforation rate of micro cores. The mechanism can be attributed to the inter-cell coupling, which is further utilized to devise a different configuration by wrapping the meta-shell with porous sponge. It is found that adding an extra layer of sponge can further improve the low-frequency attenuation performance. The proposed broadband sound barrier with effective ventilation can find potential applications in architectural acoustics and office noise insulation.

1.
Y.
Tang
,
S.
Ren
,
H.
Meng
,
F.
Xin
,
L.
Huang
,
T.
Chen
,
C.
Zhang
, and
T. J.
Lu
, “
Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
,”
Sci. Rep.
7
,
43340
(
2017
).
2.
S.
Huang
,
X.
Fang
,
X.
Wang
,
B.
Assouar
,
Q.
Cheng
, and
Y.
Li
, “
Acoustic perfect absorbers via Helmholtz resonators with embedded apertures
,”
J. Acoust. Soc. Am.
145
,
254
262
(
2019
).
3.
Y.
Chen
,
R.
Zhu
,
H.
Nguyen
, and
G.
Huang
, “
Membrane-type acoustic metamaterials: Theory, design, and application
,” in
Theory and Design of Acoustic Metamaterials
, edited by
P.
Pai
and
G.
Huang
(
SPIE Press
,
2015
), Chap. 3, pp.
53
56
.
4.
H.
Nguyen
,
Q.
Wu
,
X.
Xu
,
H.
Chen
,
S.
Tracy
, and
G.
Huang
, “
Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators
,”
Appl. Phys. Lett.
117
,
134103
(
2020
).
5.
X.
Wu
,
K. Y.
Au-Yeung
,
X.
Li
,
R. C.
Roberts
,
J.
Tian
,
C.
Hu
,
Y.
Huang
,
S.
Wang
,
Z.
Yang
, and
W.
Wen
, “
High-efficiency ventilated metamaterial absorber at low frequency
,”
Appl. Phys. Lett.
112
,
103505
(
2018
).
6.
S.
Kumar
,
T. B.
Xiang
, and
H. P.
Lee
, “
Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation
,”
Appl. Acoust.
159
,
107088
(
2020
).
7.
X.
Wu
,
C.
Fu
,
X.
Li
,
Y.
Meng
,
Y.
Gao
,
J.
Tian
,
L.
Wang
,
Y.
Huang
,
Z.
Yang
, and
W.
Wen
, “
Low-frequency tunable acoustic absorber based on split tube resonators
,”
Appl. Phys. Lett.
109
,
043501
(
2016
).
8.
G.
Ma
,
M.
Yang
,
Z.
Yang
, and
P.
Sheng
, “
Low-frequency narrow-band acoustic filter with large orifice
,”
Appl. Phys. Lett.
103
,
011903
(
2013
).
9.
J.-S.
Chen
,
Y.-B.
Chen
,
H.-J.
Tsai
,
K.-Y.
Chen
, and
L.-C.
Chou
, “
Membrane-ring acoustic metamaterials with an orifice
,”
Mater. Res. Express
6
,
095802
(
2019
).
10.
H.
Nguyen
,
Q.
Wu
,
H.
Chen
,
J.
Chen
,
Y.
Yu
,
S.
Tracy
, and
G.
Huang
, “
A Fano-based acoustic metamaterial for ultra-broadband sound barriers
,”
Proc. R. Soc. A
477
,
20210024
(
2021
).
11.
H.-l.
Zhang
,
Y.-f.
Zhu
,
B.
Liang
,
J.
Yang
,
J.
Yang
, and
J.-C.
Cheng
, “
Omnidirectional ventilated acoustic barrier
,”
Appl. Phys. Lett.
111
,
203502
(
2017
).
12.
R.
Ghaffarivardavagh
,
J.
Nikolajczyk
,
S.
Anderson
, and
X.
Zhang
, “
Ultra-open acoustic metamaterial silencer based on Fano-like interference
,”
Phys. Rev. B
99
,
024302
(
2019
).
13.
L.-j.
Li
,
B.
Zheng
,
L.-m.
Zhong
,
J.
Yang
,
B.
Liang
, and
J.-c.
Cheng
, “
Broadband compact acoustic absorber with high-efficiency ventilation performance
,”
Appl. Phys. Lett.
113
,
103501
(
2018
).
14.
J. W.
Jung
,
J. E.
Kim
, and
J. W.
Lee
, “
Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range
,”
Appl. Phys. Lett.
112
,
041903
(
2018
).
15.
M.
Thota
and
K.
Wang
, “
Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation
,”
J. Appl. Phys.
122
,
154901
(
2017
).
16.
V. M.
García-Chocano
,
S.
Cabrera
, and
J.
Sánchez-Dehesa
, “
Broadband sound absorption by lattices of microperforated cylindrical shells
,”
Appl. Phys. Lett.
101
,
184101
(
2012
).
17.
D.-Y.
Maa
, “
Potential of microperforated panel absorber
,”
J. Acoust. Soc. Am.
104
,
2861
2866
(
1998
).
18.
F. A.
Amirkulova
, “
Acoustic and elastic multiple scattering and radiation from cylindrical structures
,” Ph.D. thesis (
Rutgers, The State University of New Jersey
,
New Brunswick
,
2014
).
19.
Z.-x.
Xu
,
H.
Gao
,
Y.-j.
Ding
,
J.
Yang
,
B.
Liang
, and
J.-c.
Cheng
, “
Topology-optimized omnidirectional broadband acoustic ventilation barrier
,”
Phys. Rev. Appl.
14
,
054016
(
2020
).
You do not currently have access to this content.