The origin of dielectric constant enhancement in high-temperature (high glass transition temperature Tg) polymer dilute nanocomposites is investigated via Infrared (IR) Spectroscopy applied through Atomic Force Microscope (AFM) and density functional theory (DFT) calculations. The dielectric constant can be greatly enhanced by trace nanofiller loadings (<0.5 vol. %) in a broad class of high-temperature polymers without affecting or even with a positive influence on breakdown strength and dielectric loss. This avenue provides attractive polymer systems for high-performance polymer-based capacitive energy storage in a wide temperature range. In the dilute nanocomposites, the interface regions between the polymers and trace nanofillers are the key to the observed dielectric constant enhancement. This Letter employs AFM-IR to study chain packing in the interface regions of polyetherimide (PEI) dilute nanocomposites. The experimental results and DFT calculations indicate that flexible linkages, i.e., ether groups in PEI, play a crucial role in inducing heterogeneous morphologies in the interface regions. These results are confirmed by studies of PI(PDMA/ODA) and other dilute polymer nanocomposites in the literature as well as by lack of dielectric constant enhancement in PI(Matrimid® 5218) that does not contain flexible linkages.

1.
B.
Chu
,
X.
Zhou
,
K.
Ren
,
B.
Neese
,
M.
Lin
,
Q.
Wang
,
F.
Bauer
, and
Q. M.
Zhang
, “
A dielectric polymer with high electric energy density and fast discharge speed
,”
Science
313
(
5785
),
334
336
(
2006
).
2.
Q.
Chen
,
Y.
Shen
,
S.
Zhang
, and
Q. M.
Zhang
, “
Polymer-based dielectrics with high energy storage density
,”
Annu. Rev. Mater. Res.
45
(
1
),
433
458
(
2015
).
3.
Q.
Li
,
L.
Chen
,
M. R.
Gadinski
,
S.
Zhang
,
G.
Zhang
,
H. U.
Li
,
E.
Iagodkine
,
A.
Haque
,
L.-Q.
Chen
,
T. N.
Jackson
, and
Q.
Wang
, “
Flexible high-temperature dielectric materials from polymer nanocomposites
,”
Nature
523
(
7562
),
576
579
(
2015
).
4.
T. D.
Huan
,
S.
Boggs
,
G.
Teyssedre
,
C.
Laurent
,
M.
Cakmak
,
S.
Kumar
, and
R.
Ramprasad
, “
Advanced polymeric dielectrics for high energy density applications
,”
Prog. Mater. Sci.
83
,
236
269
(
2016
).
5.
Q.
Zhang
,
X.
Chen
,
B.
Zhang
,
T.
Zhang
,
W.
Lu
,
Z.
Chen
,
Z.
Liu
,
S. H.
Kim
,
B.
Donovan
,
R. J.
Warzoha
,
E. D.
Gomez
,
J.
Bernholc
, and
Q. M.
Zhang
, “
High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends
,”
Matter
4
(
7
),
2448
2459
(
2021
).
6.
Z.
Han
and
Q.
Wang
, “
Recent progress on dielectric polymers and composites for capacitive energy storage
,”
iEnergy
1
(
1
),
50
71
(
2022
).
7.
H.
Li
,
Y.
Zhou
,
Y.
Liu
,
L.
Li
,
Y.
Liu
, and
Q.
Wang
, “
Dielectric polymers for high-temperature capacitive energy storage
,”
Chem. Soc. Rev.
50
(
11
),
6369
6400
(
2021
).
8.
Y.
Yang
,
J.
He
,
Q.
Li
,
L.
Gao
,
J.
Hu
,
R.
Zeng
,
J.
Qin
,
S. X.
Wang
, and
Q.
Wang
, “
Self-healing of electrical damage in polymers using superparamagnetic nanoparticles
,”
Nat. Nanotechnol.
14
(
2
),
151
155
(
2019
).
9.
J.
Hu
,
S.
Zhang
, and
B.
Tang
, “
Enhancing energy density of dielectric polymer nanocomposites at ultralow filler loadings
,”
Composites, Part A
154
,
106792
(
2022
).
10.
X.-J.
Liu
,
M.-S.
Zheng
,
G.
Chen
,
Z.-M.
Dang
, and
J.-W.
Zha
, “
High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties
,”
Energy Environ. Sci.
15
(
1
),
56
81
(
2022
).
11.
Z.
Pan
,
L.
Li
,
L.
Wang
,
G.
Luo
,
X.
Xu
,
F.
Jin
,
J.
Dong
,
Y.
Niu
,
L.
Sun
,
C.
Guo
,
W.
Zhang
,
Q.
Wang
, and
H.
Wang
, “
Tailoring poly (styrene‐co‐maleic anhydride) networks for all‐polymer dielectrics exhibiting ultrahigh energy density and charge–discharge efficiency at elevated temperatures
,”
Adv. Mater.
35
,
2207580
(
2023
).
12.
P.
Wang
,
Y.
Guo
,
D.
Zhou
,
D.
Li
,
L.
Pang
,
W.
Liu
,
J.
Su
,
Z.
Shi
, and
S.
Sun
, “
High‐temperature flexible nanocomposites with ultra‐high energy storage density by nanostructured MgO fillers
,”
Adv. Funct. Mater.
32
,
2204155
(
2022
).
13.
X.
Wu
,
X.
Chen
,
Q. M.
Zhang
, and
D. Q.
Tan
, “
Advanced dielectric polymers for energy storage
,”
Energy Storage Mater.
44
,
29
47
(
2022
).
14.
Y.
Thakur
,
B.
Zhang
,
R.
Dong
,
W.
Lu
,
C.
Iacob
,
J.
Runt
,
J.
Bernholc
, and
Q. M.
Zhang
, “
Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering
,”
Nano Energy
32
,
73
79
(
2017
).
15.
A.
Azizi
,
M. R.
Gadinski
,
Q.
Li
,
M. A.
AlSaud
,
J.
Wang
,
Y.
Wang
,
B.
Wang
,
F.
Liu
,
L. Q.
Chen
,
N.
Alem
, and
Q.
Wang
, “
High‐performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high‐temperature dielectric materials
,”
Adv. Mater.
29
(
35
),
1701864
(
2017
).
16.
Y.
Zhou
,
Q.
Li
,
B.
Dang
,
Y.
Yang
,
T.
Shao
,
H.
Li
,
J.
Hu
,
R.
Zeng
,
J.
He
, and
Q.
Wang
, “
A scalable, high‐throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures
,”
Adv. Mater.
30
(
49
),
1805672
(
2018
).
17.
Y.
Thakur
,
T.
Zhang
,
C.
Iacob
,
T.
Yang
,
J.
Bernholc
,
L.
Chen
,
J.
Runt
, and
Q. M.
Zhang
, “
Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers
,”
Nanoscale
9
(
31
),
10992
10997
(
2017
).
18.
T.
Zhang
,
X.
Chen
,
Y.
Thakur
,
B.
Lu
,
Q.
Zhang
,
J.
Runt
, and
Q. M.
Zhang
, “
A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature
,”
Sci. Adv.
6
(
4
),
eaax6622
(
2020
).
19.
L.
Li
,
J.
Cheng
,
Y.
Cheng
,
T.
Han
,
Y.
Liu
,
Y.
Zhou
,
G.
Zhao
,
Y.
Zhao
,
C.
Xiong
,
L.
Dong
, and
Q.
Wang
, “
Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers
,”
Adv. Mater.
33
(
35
),
2102392
(
2021
).
20.
T.
Zhang
,
X.
Chen
,
Q.
Zhang
, and
Q. M.
Zhang
, “
Dielectric enhancement over a broad temperature by nanofiller at ultra-low volume content in poly (ether methyl ether urea
,”
Appl. Phys. Lett.
117
(
7
),
072905
(
2020
).
21.
X.
Chen
,
H.
Qin
,
X.
Qian
,
W.
Zhu
,
B.
Li
,
B.
Zhang
,
W.
Lu
,
R.
Li
,
S.
Zhang
,
L.
Zhu
,
F.
Domingues Dos Santos
,
J.
Bernholc
, and
Q. M.
Zhang
, “
Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field
,”
Science
375
(
6587
),
1418
1422
(
2022
).
22.
X.
Chen
,
V. V.
Shvartsman
,
D. C.
Lupascu
, and
Q. M.
Zhang
, “
Electrocaloric cooling—From materials to devices
,”
J. Appl. Phys.
132
(
24
),
240901
(
2022
).
23.
X.
Chen
,
T.
Yang
,
Q.
Zhang
,
L.
Chen
,
V.
Bobnar
,
C.
Rahn
, and
Q. M.
Zhang
, “
Topological structure enhanced nanostructure of high temperature polymer exhibiting more than ten times enhancement of dipolar response
,”
Nano Energy
88
,
106225
(
2021
).
24.
B.
Zhang
,
X.
Chen
,
W.
Lu
,
Q. M.
Zhang
, and
J.
Bernholc
, “
Morphology-induced dielectric enhancement in polymer nanocomposites
,”
Nanoscale
13
(
24
),
10933
10942
(
2021
).
25.
C. U.
Gonzalez-Valle
,
S. H.
Hahn
,
M. G.
Muraleedharan
,
Q. M.
Zhang
,
A. C.
Van Duin
, and
B.
Ramos-Alvarado
, “
Investigation into the atomistic scale mechanisms responsible for the enhanced dielectric response in the interfacial region of polymer nanocomposites
,”
J. Phys. Chem. C
124
(
21
),
11558
11563
(
2020
).
26.
X.
Chen
,
T.
Zhang
,
Q.
Zhang
, and
Q. M.
Zhang
, in
IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)
(
IEEE
,
2020
), pp.
79
82
.
27.
I.
Bogatyreva
,
M.
Shishkina
, and
A.
Kotov
, “
Analysis of the vibrational spectrum of diphenyl ether
,”
Russ. Chem. Bull.
25
(
4
),
786
789
(
1976
).

Supplementary Material

You do not currently have access to this content.