We implemented, optimized, and fully tested a superconducting Josephson junction fabrication process over multiple runs tailored for integrated digital circuits that are used for control and readout of superconducting qubits operating at millikelvin temperatures. This process was optimized for highly energy efficient rapid single flux quantum (ERSFQ) circuits with critical currents reduced by a factor of ∼10 as compared to those operated at 4.2 K. Specifically, it implemented Josephson junctions with 10 μA unit critical current fabricated with 10 μA/μm2 critical current density. In order to circumvent the substantial size increase in the SFQ circuit inductors, we employed an NbN high kinetic inductance layer with 8.5 pH/sq sheet inductance. Similarly, to maintain the small size of junction resistive shunts, we used a non-superconducting PdAu alloy with 4.0 Ω/sq sheet resistance. For integration with quantum circuits in a multi-chip module, 5 and 10 μm height bump processes were also optimized. To keep the fabrication process in check, we developed and thoroughly tested a comprehensive process control monitor chip set.

1.
R.
McDermott
,
M. G.
Vavilov
,
B. L. T.
Plourde
et al, “
Quantum-classical interface based on single flux quantum digital logic
,”
Quantum Sci. Technol.
3
,
024004
(
2018
).
2.
O.
Mukhanov
,
A.
Kirichenko
,
C.
Howington
et al, “
Scalable quantum computing infrastructure based on superconducting electronics
,” in
2019 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
San Francisco, CA
,
2019
), pp.
31.2.1
31.2.4
.
3.
A.
Suzuki
,
N.
Cothard
,
A. T.
Lee
et al, “
Commercially fabricated antenna-coupled transition edge sensor bolometer detectors for next-generation cosmic microwave background polarimetry experiment
,”
J. Low Temp. Phys.
199
,
1158
1166
(
2020
).
4.
D. E.
Kirichenko
,
S.
Sarwana
, and
A. F.
Kirichenko
, “
Zero static power dissipation biasing of RSFQ circuits
,”
IEEE Trans. Appl. Supercond.
21
,
776
779
(
2011
).
5.
A. F.
Kirichenko
,
I. V.
Vernik
,
M. Y.
Kamkar
et al, “
ERSFQ 8-bit parallel arithmetic logic unit
,”
IEEE Trans. Appl. Supercond.
29
,
1302407
(
2019
).
6.
S. K.
Tolpygo
,
J. L.
Mallek
,
V.
Bolkhovsky
et al, “
Progress toward superconductor electronics fabrication process with planarized NbN and NbN/Nb layers
,”
IEEE Trans. Appl. Supercond.
33
,
1101512
(
2023
).
7.
D. T.
Yohannes
,
R. T.
Hunt
,
J. A.
Vivalda
et al, “
Planarized, extendible, multilayer fabrication process for superconducting electronics
,”
IEEE Trans. Appl. Supercond.
25
,
1
(
2015
).
8.
R. P.
Robertazzi
,
I.
Siddiqi
, and
O. A.
Mukhanov
, “
Flux trapping experiments in single flux quantum shift registers
,”
IEEE Trans. Appl. Supercond.
7
,
3164
3167
(
1997
).
9.
S.
Narayana
,
Y. A.
Polyakov
, and
V. K.
Semenov
, “
Evaluation of flux trapping in superconducting circuits
,”
IEEE Trans. Appl. Supercond.
19
,
640
643
(
2009
).
10.
C. J.
Fourie
and
K.
Jackman
, “
Experimental verification of moat design and flux trapping analysis
,”
IEEE Trans. Appl. Supercond.
31
,
1
(
2021
).
11.
S. K.
Tolpygo
,
D.
Amparo
,
R. T.
Hunt
,
J. A.
Vivalda
, and
D. T.
Yohannes
, “
Diffusion stop-layers for superconducting integrated circuits and qubits with Nb-based Josephson junctions
,”
IEEE Trans. Appl. Supercond.
21
,
119
125
(
2011
).
12.
C.
Wang
,
C.
Axline
,
Y. Y.
Gao
et al, “
Surface participation and dielectric loss in superconducting qubits
,”
Appl. Phys. Lett.
107
,
162601
(
2015
).
13.
D.
Yohannes
,
S.
Sarwana
,
S.
Tolpygo
et al, “
Characterization of HYPRES' 4.5 kA/cm2 & 8 kA/cm2 Nb/AlOx/Nb fabrication processes
,”
IEEE Trans. Appl. Supercond.
15
,
90
93
(
2005
).
14.
S. K.
Tolpygo
,
E. B.
Golden
,
T. J.
Weir
et al, “
Self-and mutual inductance of NbN and bilayer NbN/Nb inductors in a planarized fabrication process with Nb ground planes
,”
IEEE Trans. Appl. Supercond.
33
,
1101911
(
2023
).
15.
A. J.
Annunziata
,
D. F.
Santavicca
,
L.
Frunzio
,
G.
Catelani
,
M. J.
Rooks
,
A.
Frydamn
, and
D. E.
Prober
, “
Tunable superconducting nanoinductors
,”
Nanotechnology
21
,
445202
(
2010
).
16.
K. K.
Likharev
and
V. K.
Semenov
, “
RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clock-frequency digital systems
,”
IEEE Trans. Appl. Supercond.
1
,
3
28
(
1991
).
17.
S. V.
Polonsky
,
V. K.
Semenov
,
P.
Bunyk
et al, “
New RSFQ circuits
,”
IEEE Trans. Appl. Supercond.
3
,
2566
2577
(
1993
).
18.
S. V.
Polonsky
,
V. K.
Semenov
, and
A. F.
Kirichenko
, “
Single flux quantum B flip-flop and its possible applications
,”
IEEE Trans. Appl. Supercond.
4
,
9
16
(
1994
).
19.
D.
Olaya
,
M.
Castellanos-Beltran
,
J.
Pulecio
et al, “
Planarized process for single-flux-quantum circuits with self-shunted Nb/NbxSi1−x/Nb Josephson junctions
,”
IEEE Trans. Appl. Supercond.
29
,
1
(
2019
).
20.
H. G.
Ahmad
,
L. D.
Palma
,
D.
Massarotti
et al, “
Characterization of lateral junctions and micro-SQUIDs involving magnetic multilayers
,”
IEEE Trans. Appl. Supercond.
33
,
1101205
(
2023
).
You do not currently have access to this content.