MXenes are a class of two-dimensional materials with potential applications in the fields such as thermal management and high-temperature materials. In this study, the transitions of Ti3C2Tx MXene are investigated during thermal annealing via x-ray photoelectron spectroscopy and two-dimensional correlation spectroscopy. The thermal evolution of MXene samples occurs as two distinct processes in different temperature regions: process I (from 25 to 500 °C) and process II (from 500 to 777 °C). In process I, the terminal groups of MXene are reduced, and fluorine (–F) terminal groups are released. Four different pathways are identified with C–Ti–O and C–C as probable final products. In process II, the reaction resulting in the removal of –F species and decomposition of the Ti3C2 region in the MXene is observed. These results provide insight into the thermal decomposition behavior of Ti3C2Tx MXene, which can assist in the design of MXene-based materials with specific functionalities.

1.
B.
Anasori
,
M. R.
Lukatskaya
, and
Y.
Gogotsi
,
Nat. Rev. Mater.
2
(
2
),
16098
(
2017
).
2.
S. K.
Nemani
,
B.
Zhang
,
B. C.
Wyatt
,
Z. D.
Hood
,
S.
Manna
,
R.
Khaledialidusti
,
W.
Hong
,
M. G.
Sternberg
,
S. K. R. S.
Sankaranarayanan
, and
B.
Anasori
,
ACS Nano
15
(
8
),
12815
(
2021
).
3.
R. B.
Rakhi
,
B.
Ahmed
,
M. N.
Hedhili
,
D. H.
Anjum
, and
H. N.
Alshareef
,
Chem. Mater.
27
(
15
),
5314
(
2015
).
4.
Y.
Gogotsi
and
Q.
Huang
,
ACS Nano
15
(
4
),
5775
(
2021
).
5.
G.
Murali
,
J. K. R.
Modigunta
,
Y. H.
Park
,
J.-H.
Lee
,
J.
Rawal
,
S.-Y.
Lee
,
I.
In
, and
S.-J.
Park
,
ACS Nano
16
(
9
),
13370
(
2022
).
6.
A.
Krüger
,
A.
Bürkle
,
K.
Hauser
, and
A.
Mangerich
,
Nat. Commun.
11
(
1
),
2174
(
2020
);
[PubMed]
B. J. T.
de Villers
,
S.-M.
Bak
,
J.
Yang
, and
S.-D.
Han
,
Batteries Supercaps
4
(
5
),
778
(
2021
).
7.
Y.-H.
Wang
,
S.
Zheng
,
W.-M.
Yang
,
R.-Y.
Zhou
,
Q.-F.
He
,
P.
Radjenovic
,
J.-C.
Dong
,
S.
Li
,
J.
Zheng
,
Z.-L.
Yang
,
G.
Attard
,
F.
Pan
,
Z.-Q.
Tian
, and
J.-F.
Li
,
Nature
600
(
7887
),
81
(
2021
);
[PubMed]
D.
Johnson
,
K.
Hansen
,
R.
Yoo
, and
A.
Djire
,
ChemElectroChem
9
(
18
),
e202200555
(
2022
);
L.
Li
,
J.
Xu
,
M.
Shi
,
J.
He
,
J.
Jiang
,
K.
Dai
,
Z.
Jiang
, and
C.
Yan
,
Mater. Des.
217
,
110606
(
2022
).
8.
X.
Wang
,
A.
Rosspeintner
,
A.
Ziarati
,
J.
Zhao
, and
T.
Bürgi
,
Nat. Commun.
13
(
1
),
5458
(
2022
);
[PubMed]
P.
Salles
,
D.
Pinto
,
K.
Hantanasirisakul
,
K.
Maleski
,
C. E.
Shuck
, and
Y.
Gogotsi
,
Adv. Funct. Mater.
29
(
17
),
1809223
(
2019
).
9.
S.
Wan
,
X.
Li
,
Y.
Wang
,
Y.
Chen
,
X.
Xie
,
R.
Yang
,
A. P.
Tomsia
,
L.
Jiang
, and
Q.
Cheng
,
Proc. Natl. Acad. Sci. U. S. A.
117
(
44
),
27154
(
2020
);
[PubMed]
V.
Natu
,
M.
Benchakar
,
C.
Canaff
,
A.
Habrioux
,
S.
Célérier
, and
M. W.
Barsoum
,
Matter
4
(
4
),
1224
(
2021
).
10.
M.
Scardamaglia
,
T.
Susi
,
C.
Struzzi
,
R.
Snyders
,
G.
Di Santo
,
L.
Petaccia
, and
C.
Bittencourt
,
Sci. Rep.
7
(
1
),
7960
(
2017
).
11.
H. C.
Choi
,
S. R.
Ryu
,
H.
Ji
,
S. B.
Kim
,
I.
Noda
, and
Y. M.
Jung
,
J. Phys. Chem. B
114
(
34
),
10979
(
2010
);
[PubMed]
Y.
Park
,
S. H.
Shin
,
H.
Hwang
,
S. M.
Lee
,
S. P.
Kim
,
H. C.
Choi
, and
Y. M.
Jung
,
J. Mol. Struct.
1069
,
157
(
2014
).
12.
S.
Hüfner
,
S.
Schmidt
, and
F.
Reinert
,
Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip.
547
(
1
),
8
(
2005
).
13.
A.
Lipatov
,
M.
Alhabeb
,
M. R.
Lukatskaya
,
A.
Boson
,
Y.
Gogotsi
, and
A.
Sinitskii
,
Adv. Electron. Mater.
2
(
12
),
1600255
(
2016
).
14.
M.
Han
,
C. E.
Shuck
,
R.
Rakhmanov
,
D.
Parchment
,
B.
Anasori
,
C. M.
Koo
,
G.
Friedman
, and
Y.
Gogotsi
,
ACS Nano
14
(
4
),
5008
(
2020
).
15.
J.
Halim
,
K. M.
Cook
,
M.
Naguib
,
P.
Eklund
,
Y.
Gogotsi
,
J.
Rosen
, and
M. W.
Barsoum
,
Appl. Surf. Sci.
362
,
406
(
2016
).
16.
J.
Xu
,
T.
Peng
,
Q.
Zhang
,
H.
Zheng
,
H. Z.
Yu
, and
S.
Shi
,
ACS Appl. Nano Mater.
5
(
7
),
8794
(
2022
);
Z.
Sun
,
Z.
Yan
,
K.
Yue
,
A.
Li
, and
L.
Qian
,
Compos. Part B: Eng.
196
,
108132
(
2020
);
G. S.
Gund
,
J. H.
Park
,
R.
Harpalsinh
,
M.
Kota
,
J. H.
Shin
,
T.-I.
Kim
,
Y.
Gogotsi
, and
H. S.
Park
,
Joule
3
(
1
),
164
(
2019
).
17.
X.
Zhao
,
D. E.
Holta
,
Z.
Tan
,
J.-H.
Oh
,
I. J.
Echols
,
M.
Anas
,
H.
Cao
,
J. L.
Lutkenhaus
,
M.
Radovic
, and
M. J.
Green
,
ACS Appl. Nano Mater.
3
(
11
),
10578
(
2020
);
B.
Ahmed
,
D. H.
Anjum
,
M. N.
Hedhili
,
Y.
Gogotsi
, and
H. N.
Alshareef
,
Nanoscale
8
(
14
),
7580
(
2016
);
[PubMed]
Y.
Lee
,
S. J.
Kim
,
Y.-J.
Kim
,
Y.
Lim
,
Y.
Chae
,
B.-J.
Lee
,
Y.-T.
Kim
,
H.
Han
,
Y.
Gogotsi
, and
C. W.
Ahn
,
J. Mater. Chem. A
8
(
2
),
573
(
2020
).
18.
X.
Wu
,
Y.
Gong
,
B.
Yang
,
Z.
Mao
,
Z.
Yan
,
C.
Su
,
S.
Xiong
,
X.
Long
, and
X.
Wang
,
Appl. Surf. Sci.
581
,
152364
(
2022
).
19.
R.
Lotfi
,
M.
Naguib
,
D. E.
Yilmaz
,
J.
Nanda
, and
A. C. T.
van Duin
,
J. Mater. Chem. A
6
(
26
),
12733
(
2018
);
J.
Zhou
,
X.
Zha
,
F. Y.
Chen
,
Q.
Ye
,
P.
Eklund
,
S.
Du
, and
Q.
Huang
,
Angew. Chem. (Int. ed. English)
55
(
16
),
5008
(
2016
).
20.
F.
Kong
,
X.
He
,
Q.
Liu
,
X.
Qi
,
Y.
Zheng
,
R.
Wang
, and
Y.
Bai
,
Electrochim. Acta
265
,
140
(
2018
).
21.
J. L.
Hart
,
K.
Hantanasirisakul
,
A. C.
Lang
,
B.
Anasori
,
D.
Pinto
,
Y.
Pivak
,
J. T.
van Omme
,
S. J.
May
,
Y.
Gogotsi
, and
M. L.
Taheri
,
Nat. Commun.
10
(
1
),
522
(
2019
).
22.
Y.
Ren
,
T.
Zhou
,
G.
Su
, and
Y.
Ma
,
Vib. Spectrosc.
96
,
32
(
2018
);
I.
Noda
,
Appl. Spectrosc.
47
(
9
),
1329
(
1993
).
23.
H.
Huang
,
X.
Ding
,
C.
Zhu
,
Z.
He
, and
Y.
Yu
,
Anal. Chem.
85
(
4
),
2161
(
2013
).
24.
I.
Persson
,
L.-Å.
Näslund
,
J.
Halim
,
M. W.
Barsoum
,
V.
Darakchieva
,
J.
Palisaitis
,
J.
Rosen
, and
P. O. Å.
Persson
,
2D Mater.
5
(
1
),
015002
(
2017
).
25.
T.
Schultz
,
N. C.
Frey
,
K.
Hantanasirisakul
,
S.
Park
,
S. J.
May
,
V. B.
Shenoy
,
Y.
Gogotsi
, and
N.
Koch
,
Chem. Mater.
31
(
17
),
6590
(
2019
).
26.
Z.
Li
,
L.
Wang
,
D.
Sun
,
Y.
Zhang
,
B.
Liu
,
Q.
Hu
, and
A.
Zhou
,
Mater. Sci. Eng.: B
191
,
33
(
2015
).

Supplementary Material

You do not currently have access to this content.