Electron-doped Sr2IrO4 is the best candidate for unconventional superconductivity, but direct evidence of superconductivity has not been experimentally confirmed. Therefore, it is urgent to explore the complex and rich physical properties caused by doping. The planar Hall effect (PHE) is a sensitive technique for the characterization of intrinsic magnetic properties in magnetic thin films and is applied widely in spintronic devices. In this work, the PHE for La-doped Sr2IrO4 films as a function of the magnetic field direction and temperature exhibited unique properties caused by electron doping. The amplitude of PHE is proportional to the strength of the applied magnetic field. Remarkably, as the temperature increased, a sign reversal of angle-dependent PHE occurred at 90 K, which indicated the change of magnetic anisotropy. Subsequent variable-temperature traditional Hall measurements and time-resolved optical studies eliminated different types of carrier interactions. The anisotropic magnetoresistance measurements indicated that the sign reversal can be attributed to the changes of a spin structure after electron doping, and the reversal temperature is related to the strength of ferromagnetism. These results provide a platform to study the magnetic interactions and suggest the possibility of realizing thermal controllable magnetic sensor devices in electron-doped Sr2IrO4 films.

1.
L. F.
Mattheiss
,
Phys. Rev. B
13
,
2433
(
1976
).
2.
H.
Zhang
,
C.
Liu
,
X.
Qi
,
X.
Dai
,
Z.
Fang
, and
S.
Zhang
,
Nat. Phys.
5
,
438
(
2009
).
3.
X.
Wan
,
A. M.
Turner
,
A.
Vishwanath
, and
S. Y.
Savrasov
,
Phys. Rev. B
83
,
205101
(
2011
).
4.
R.
Schaffer
,
E. K.-H.
Lee
,
B.
Yang
, and
Y. B.
Kim
,
Rep. Prog. Phys.
79
,
094504
(
2016
).
5.
H.
Watanabe
,
T.
Shirakawa
, and
S.
Yunoki
,
Phys. Rev. Lett.
110
,
027002
(
2013
).
6.
F.
Wang
and
T.
Senthil
,
Phys. Rev. Lett.
106
,
136402
(
2011
).
7.
M.
Ge
,
T. F.
Qi
,
O. B.
Korneta
,
D. E.
De Long
,
P.
Schlottmann
,
W. P.
Crummett
, and
G.
Cao
,
Phys. Rev. B
84
,
100402(R)
(
2011
).
8.
X.
Chen
,
T.
Hogan
,
D.
Walkup
,
W.
Zhou
,
M.
Pokharel
,
M.
Yao
,
W.
Tian
,
T. Z.
Ward
,
Y.
Zhao
,
D.
Parshall
,
C.
Opeil
,
J. W.
Lynn
,
V.
Madhavan
, and
S. D.
Wilson
,
Phys. Rev. B
92
,
075125
(
2015
).
9.
T.
Han
,
D.
Liang
,
Y.
Wang
,
J.
Yang
,
H.
Han
,
J.
Wang
,
J.
Gong
,
L.
Luo
,
W. K.
Zhu
,
C.
Zhang
,
Y.
Zhang
, and
J.
Supercond
,
Nov. Magn.
30
,
3493
(
2017
).
10.
H.
Gretarsson
,
N. H.
Sung
,
J.
Porras
,
J.
Bertinshaw
,
C.
Dietl
,
J. A. N.
Bruin
,
A. F.
Bangura
,
Y. K.
Kim
,
R.
Dinnebier
,
J.
Kim
,
A.
Al-Zein
,
M.
Moretti Sala
,
M.
Krisch
,
M.
Le Tacon
,
B.
Keimer
, and
B. J.
Kim
,
Phys. Rev. Lett.
117
,
107001
(
2016
).
11.
C.
Cosio-Castaneda
,
G.
Tavizon
,
A.
Baeza
,
P.
de la Mora
, and
R.
Escudero
,
J. Phys.:Condens. Matter
19
,
446210
(
2007
).
12.
Y.
Klein
and
I.
Terasaki
,
J. Phys.: Condens. Matter
20
,
295201
(
2008
).
13.
O. B.
Korneta
,
T.
Qi
,
S.
Chikara
,
S.
Parkin
,
L. E.
De Long
,
P.
Schlottmann
, and
G.
Cao
,
Phys. Rev. B
82
,
115117
(
2010
).
14.
Y. J.
Yan
,
M. Q.
Ren
,
H. C.
Xu
,
B. P.
Xie
,
R.
Tao
,
H. Y.
Choi
,
N.
Lee
,
Y. J.
Choi
,
T.
Zhang
, and
D. L.
Feng
, “
Electron-Doped Sr2IrO4: An Analogue of Hole-Doped Cuprate Superconductors Demonstrated by Scanning Tunneling Microscopy
,”
Phys. Rev. X
5
,
041018
(
2015
).
15.
D.
Yao
and
T.
Li
,
J. Phys.:Condens. Matter
30
,
495601
(
2018
).
16.
C.
Dhital
,
T.
Hogan
,
Z.
Yamani
,
C.
de la Cruz
,
X.
Chen
,
S.
Khadka
,
Z.
Ren
, and
S. D.
Wilson
,
Phys. Rev. B
87
,
144405
(
2013
).
17.
S.
Boseggia
,
H. C.
Walker
,
J.
Vale
,
R.
Springell
,
Z.
Feng
,
R. S.
Perry
,
M. M.
Sala
,
H. M.
Ronnow
,
S. P.
Collins
, and
D. F.
McMorrow
,
J. Phys.:Condens. Matter
25
,
422202
(
2013
).
18.
B. J.
Kim
,
H.
Jin
,
S. J.
Moon
,
J. Y.
Kim
,
B. G.
Park
,
C. S.
Leem
,
J.
Yu
,
T. W.
Noh
,
C.
Kim
,
S. J.
Oh
,
J. H.
Park
,
V.
Durairaj
,
G.
Cao
, and
E.
Rotenberg
,
Phys. Rev. Lett.
101
,
076402
(
2008
).
19.
C.
Lu
,
S.
Dong
,
A.
Quindeau
,
D.
Preziosi
,
N.
Hu
, and
M.
Alexe
,
Phys. Rev. B
91
,
104401
(
2015
).
20.
C.
Lu
,
B.
Gao
,
H.
Wang
,
W.
Wang
,
S.
Yuan
,
S.
Dong
, and
J.
Liu
,
Adv. Funct. Mater.
28
,
1706589
(
2018
).
21.
M. R.
Liu
,
H. X.
Xue
,
J. C.
Meng
,
R. P.
Bai
,
W. M.
Jiang
,
Z.
Zhang
,
J. Z.
Ling
,
L.
He
,
C. M.
Xiong
,
R. F.
Dou
, and
J. C.
Nie
,
Phys. Rev. B
100
,
075129
(
2019
).
22.
B.
Ozer
,
H.
Piskin
, and
N.
Akdogan
,
IEEE Sens. J.
19
,
5493
(
2019
).
23.
T. Q.
Hung
,
F.
Terki
,
S.
Kamara
,
K.
Kim
,
S.
Charar
, and
C.
Kim
,
J. Appl. Phys.
117
,
154505
(
2015
).
24.
Y.
Liu
,
J.
Yang
,
W.
Wang
,
H.
Du
,
W.
Ning
,
L.
Ling
,
W.
Tong
,
Z.
Qu
,
G.
Cao
,
Y.
Zhang
, and
M.
Tian
,
Phys. Rev. B
95
,
161103(R)
(
2017
).
25.
A. V.
Kudrin
,
O. V.
Vikhrova
, and
Y. A.
Danilov
,
Tech. Phys. Lett.
36
,
511
(
2010
).
26.
C. R.
Akouala
,
R.
Kumar
,
S.
Punugupati
,
C. L.
Reynolds
,
J. G.
Reynolds
,
E. J.
Mily
,
J.
Maria
,
J.
Narayan
, and
F.
Hunte
,
Appl. Phys. A
125
,
293
(
2019
).
27.
T. R.
Mcguire
and
R. I.
Potter
,
IEEE T. Magn.
11
,
1018
(
1975
).
28.
M.
Bowen
,
K. J.
Friedland
,
J.
Herfort
,
H. P.
Schonherr
, and
K. H.
Ploog
,
Phys. Rev. B
71
,
172401
(
2005
).
29.
T.
Li
,
L.
Zhang
, and
X.
Hong
,
J. Vac. Sci. Technol. A
40
,
010807
(
2022
).
30.
S.
Kokado
,
M.
Tsunoda
,
K.
Harigaya
, and
A.
Sakuma
,
J. Phys. Soc. Jpn.
81
,
24705
(
2012
).
31.
M.
Liu
,
H.
Liu
,
T.
Shao
,
W.
Jiang
,
Z.
Zhang
,
J.
Ling
,
C.
Yao
,
Y.
Qiao
,
Q.
Zhao
,
C.
Xiong
,
R.
Dou
, and
J.
Nie
,
Phys. Rev. B
104
,
035301
(
2021
).
32.
X.
Zhuo
,
J. W.
Lai
,
P.
Yu
,
Z.
Yu
,
J. C.
Ma
,
W.
Lu
,
M.
Liu
,
Z.
Liu
, and
D.
Sun
,
Light: Sci. Appl.
10
,
101
(
2021
).
33.
J.
Ge
,
D.
Ma
,
Y.
Liu
,
H.
Wang
,
Y.
Li
,
J.
Luo
,
T.
Luo
,
Y.
Xing
,
J.
Yan
,
D.
Mandrus
,
H.
Liu
,
X. C.
Xie
, and
J.
Wang
,
Nat. Sci. Rev.
7
,
1879
(
2020
).
34.
A.
Rajapitamahuni
,
L.
Zhang
,
M. A.
Koten
,
V. R.
Singh
,
J. D.
Burton
,
E. Y.
Tsymbal
,
J. E.
Shield
, and
X.
Hong
,
Phys. Rev. Lett.
116
,
187201
(
2016
).
35.
H. X.
Tang
,
R. K.
Kawakami
,
D. D.
Awschalom
, and
M. L.
Roukes
,
Phys. Rev. Lett.
90
,
107201
(
2003
).
36.
Y.
Bason
,
L.
Klein
,
J. B.
Yau
,
X.
Hong
, and
C. H.
Ahn
,
Appl. Phys. Lett.
84
,
2593
(
2004
).
37.
Y.
Klein
and
I.
Terasaki
,
J. Electron. Mater.
38
,
1331
(
2009
).
38.
N.
Nagaosa
,
J.
Sinova
,
S.
Onoda
,
A. H.
MacDonald
, and
N. P.
Ong
,
Rev. Mod. Phys.
82
,
1539
(
2010
).
39.
C.
Lu
,
A.
Quindeau
,
H.
Deniz
,
D.
Preziosi
,
D.
Hesse
, and
M.
Alexe
,
Appl. Phys. Lett.
105
,
082407
(
2014
).
40.
H.
Sharma
,
H.
Bana
,
A.
Tulapurkar
, and
C. V.
Tomy
,
Mater. Chem. Phys.
180
,
5
(
2016
).
41.
S.
Geprägs
,
B. E.
Skovdal
,
M.
Scheufele
,
M.
Opel
,
D.
Wermeille
,
P.
Thompson
,
A.
Bombardi
,
V.
Simonet
,
S.
Grenier
,
P.
Lejay
,
G. A.
Chahine
,
D. L.
Quintero-Castro
,
R.
Gross
, and
D.
Mannix
,
Phys. Rev. B
102
,
214402
(
2020
).
42.
L.
Zhou
,
B. C.
Ye
,
H. B.
Gan
,
J. Y.
Tang
,
P. B.
Chen
,
Z. Z.
Du
,
Y.
Tian
,
S. Z.
Deng
,
G. P.
Guo
,
H. Z.
Lu
,
F.
Liu
, and
H. T.
He
,
Phys. Rev. B
99
,
155424
(
2019
).

Supplementary Material

You do not currently have access to this content.